

PHASE II ENVIRONMENTAL SITE ASSESSMENT

Fort Wayne Community Schools – Transportation South 6006 Ardmore Avenue Fort Wayne, Allen County, Indiana 46809 SES Phase I ESA Project No. : 2023-0634 SES Phase II ESA Project No.: 2023-0635

July 10, 2023

Prepared for:

Fort Wayne Community Schools 1519 Catalpa Street Fort Wayne, Indiana 46802

A 100% EMPLOYEE-OWNED COMPANY www.sesadvantage.com

ENVIRONMENTAL PROFESSIONAL STATEMENT

I certify, under penalty of law, that this document and all appendices and attachments as applicable were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete.

I declare that, to the best of my professional knowledge and belief, I meet the definition of Environmental Professional as defined in §312.10 of 40 CFR 312. I have the specific qualifications based on education, training, and experience.

Glen A. Howard, CHMM Senior Project Manager SES Fort Wayne, IN

EXECUTIVE SUMMARY

SES Environmental completed a Phase II environmental site assessment (ESA) at the Fort Wayne Community Schools – Transportation South property located at 6006 Ardmore Avenue in Fort Wayne Allen County, Indiana (herein after referred to as the "site"). The assessment was conducted in June 2023 to further assess *recognized environmental conditions (RECs)* identified in SES's *Phase I Environmental Site Assessment* dated June 2, 2023. In review, the two following RECs were identified.

- **REC #1** One 12,000-gallon diesel fuel underground storage tank (UST) and one 10,000-gallon diesel fuel UST are currently in use on the north portion of the subject property. In addition, regulatory records indicate that one 12,000-gallon gasoline UST, formerly located at the existing UST area, was removed in 1993, and one 500-gallon used oil UST was removed or closed-in-place in 1991. The location of the used oil UST was not determined. The potential exists for releases of petroleum at the UST systems since at least 2009.
- **REC #2** Historical review indicates the property has been occupied by a bus maintenance garage since development in 1957. Maintenance operations have included the storage and use of new and used oil, antifreeze, and solvents. In addition, at least three in-ground hydraulic lifts were formerly located at the service garage area and an oil/water separator is located south of the building. The potential exists for releases of hazardous substances and/or petroleum products to have occurred during the long history of maintenance operations at the property.

The Phase II environmental assessment was conducted to investigate the foregoing RECs to determine current conditions and to screen for constituents of concern. Soil borings were advanced at seven locations with soil and groundwater sampling/testing at each location. Specifically, sampling was conducted at four locations near the existing UST and fuel dispensing area (REC #1). In addition, borings were advanced around the perimeter of the maintenance service/garage, as well as near the separator (REC #2). Sampling locations GP1 and GP2 were positioned between the UST/fueling area and the former garage area. Sampling locations GP3 and GP4 were positioned at the UST/fueling area and sampling locations GP-5, GP6 and GP7 were positioned north, south, and west, respectively, of the maintenance service/garage. Furthermore, sampling location GP6 was positioned adjacent to the separator unit. At each sampling location, soil and groundwater samples were collected and analyzed for volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) as a screening for solvent and petroleum. At sampling locations positioned around the existing and former garages, the collected soil and groundwater samples were also analyzed for ethylene glycol, as a screening for antifreeze; and for arsenic, cadmium, chromium and lead as a screening for used oils. At sampling locations located hydraulically downgradient of the garage, identified as GP5, GP6, and GP7, groundwater samples were also analyzed for oil and grease as a screening for automotive fuels and lubricants. Assessment results are summarized as follows.

- Native clay soil was present beneath the pavement materials and extended to depths of approximately 3 to 7 feet, followed by sand extending to a depth of at least 35 feet (depth of exploration). Depth to groundwater was generally 31 feet. Groundwater flow to the southwest was inferred. Field evidence of soil contamination, as petroleum odors, were not observed nor were elevated (> 6 ppmv) PID responses.
- Soil sampling and testing found no detectable concentrations of VOCs, PAHs, arsenic, cadmium, or ethylene glycol. The metals, chromium and lead, were detected in soil samples; however, these metals occur naturally in soils and the detected concentrations were well below *published human health levels*.
- Groundwater sampling and testing found no detectable concentrations of VOCs, PAHs, arsenic, cadmium, ethylene glycol, or oil & grease. The metals, chromium and lead, were detected in groundwater samples; however, these metals occur naturally and the detected chromium concentrations were well below the *published human health level*. The total lead concentration at GP1 was slightly higher than the *published*

human health level. Due to observed turbidity and suspended solids in the groundwater samples, total lead concentration can be bias high.

In summary, this assessment found no evidence of petroleum, oils, glycol, grease, or solvent contamination (e.g., no evidence of a historical release of petroleum or hazardous substance). Phase II assessment is complete and based on the above, no further assessment or corrective action is necessary at this time.

TABLE OF CONTENTS

1.0	INTRO	DUCTION		
2.0	ВАСКО	GROUND		1
	2.1	Site Loo	ation and Surrounding Area	
	2.2	Current	Site Conditions	
	2.3	Site His	tory	2
	2.4	Phase I	Assessment – June 2, 2023	2
3.0	PHASE	E II ENVIRG	DNMENTAL ASSESSMENT	
	3.1	Soil Bor	ing / Sampling Methods	4
	3.2	Ground	water Sampling Point Installation and Sampling	5
	3.3	Surveyi	ng and Gauging	5
	3.4	Assessr	nent Results	6
		3.4.1	Soil and Groundwater Conditions	
		3.4.2	Soil Testing Results	
		3.4.3	Groundwater Testing Results	8
4.0	SUMN	/IARY		9
5.0	OPINI	ONS AND	RECOMMENDATIONS	

FIGURES

APPENDICES

LIST OF TABLES

Table 1. Re	elative Groundwater Elevations
-------------	--------------------------------

- Table 2. Soil Testing Results
- Table 3. Groundwater Testing Results

LIST OF FIGURES

- Figure 1. Topographic Map
- Figure 2. Site Map
- Figure 3. Inferred Groundwater Flow 6/21/2023
- Figure 4. Soil Testing Results
- Figure 5. Groundwater Testing Results

LIST OF APPENDICES

Appendix A.	Boring Logs
Appendix B.	Laboratory Reports

1.0 INTRODUCTION

SES Environmental completed a Phase II environmental site assessment (ESA) at the Fort Wayne Community Schools – Transportation South property located at 6006 Ardmore Avenue in Fort Wayne Allen County, Indiana (herein after referred to as the "site"). The assessment was conducted in June 2023 to further assess *recognized environmental conditions (RECs)* identified in SES's *Phase I Environmental Site Assessment* dated June 2, 2023.

The report details the Phase II assessment and begins by summarizing general background information pertaining to the site and surrounding area. Assessment methods and test results are then presented. The report concludes with a summary of the results of the assessment. Supporting documentation including figures, soil boring logs, and laboratory testing reports are provided in the appendices.

2.0 BACKGROUND

2.1 Site Location and Surrounding Area

The site is located along the west side of Ardmore Avenue, approximately 4½ miles southwest of the City of Fort Wayne central business district. Geographically, the subject property is located at approximately 41.0289160° north latitude and 85.1901000° west longitude. The elevation of this subject property is approximately 775 feet above mean sea level as shown on the Fort Wayne West, Indiana USGS 7.5-Minute Quadrangle Map. A Topographic Map and Site Plan are presented as Figures 1 and 2, respectively.

The site is located in a residential and industrial area along Ardmore Avenue with undeveloped land to the north, residential properties to the east and a quarry to the south and west. More specifically, the immediate north adjoining property is occupied by undeveloped land that was formerly occupied by Elmhurst High School (3829 Sandpoint Road) with Sand Point Road beyond. Ardmore Avenue borders the site to the east, with residences (5915-5971 Ardmore Avenue and 3731 Elmhurst Drive) and Midwest Tile and Concrete Products (6209 Ardmore Avenue), which operates as a manufacturer of drainage components, beyond. The immediate south adjoining property is occupied by Heidelberg Materials, Aggregates (6002 & 6100 Ardmore Avenue) and Hanson Quarry. The immediate west adjoining property is occupied by Hanson Quarry (4700 Sandpoint Road & 4300 Ardmore Avenue).

2.2 Current Site Conditions

The site property is rectangle shaped and consists of two parcels of land containing 8.53 acres. A one-story office/maintenance garage building is located on the north portion and a one-story storage building is located on the central portion of the property. Access to the property is from the entrance off Ardmore Avenue to the east. Asphalt-paved drive areas surround the office/maintenance building to the north and south, with paved parking areas generally comprising the remaining portions of the property.

The office/maintenance garage building is one-story and contains approximately 15,911 square feet of floor space. The interior of the building consists of finished offices in the east and central portions and a garage area in the west portion. The garage area in the west portion of the building consists of five bays. Two bays in the east portion of the garage are used for storage and truck parking. The three bays in the central portion of the garage are used for conducting service and maintenance on school buses. The garage bay in the west portion of the building is used as a wash bay.

The storage building on the central portion of the property is one-story and contains approximately 1,500 square feet of floor space and is used for storing lawn mowers, a snowplow, and other miscellaneous items.

Two underground storage tanks (USTs) and two fuel dispensers are located north of the office/maintenance garage building. Records indicate one 12,000-gallon diesel fuel UST and one 10,000-gallon diesel fuel UST are currently utilized. Furthermore, the most recent inspection of the UST system conducted by IDEM on August 31, 2017 found no violations and stated the facility appeared to be in compliance. Two manholes, which cover an underground oil/water separator, are located along the south side of the building. The separator is reportedly of concrete construction; however, additional construction details were not available.

Water and sewer services are provided to the site by the City of Fort Wayne. Natural gas is supplied to the property by Northern Indiana Public Service Company (NIPSCO) and electricity is provided by Indiana Michigan Power (I&M).

2.3 Site History

The earliest reviewed historical source consists of an aerial photograph from the year 1938, which depicts the site with a residential dwelling and several outbuildings on the west portion and wooded land on the east portion. The original portion of the existing office/maintenance garage building was constructed in 1957. Based on a review of historical aerial photographs and city directories the building appears to have been occupied by the school system since it was built. An aerial photograph from 1957 shows the building was likely associated with a north adjoining school building (former Elmhurst High School). City directories indicate the property has been occupied by the Fort Wayne Community Schools Bus Garage since at least 1970.

2.4 Phase I Assessment - June 2, 2023

SES conducted a Phase I Environmental Site Assessment (ESA) of the site in May-June 2023. The ESA included a visual inspection of the site and limited observations of surrounding properties, a review of historic land use, a review of regulatory listings, and interviews with persons potentially knowledgeable concerning site conditions. The assessment revealed the following *recognized environmental conditions* (RECs) at the site property:

- **REC #1** One 12,000-gallon diesel fuel underground storage tank (UST) and one 10,000-gallon diesel fuel UST are currently in use on the north portion of the subject property. In addition, regulatory records indicate that one 12,000-gallon gasoline UST, formerly located at the existing UST area, was removed in 1993, and one 500-gallon used oil UST was removed or closed-in-place in 1991. The location of the used oil UST was not determined. The potential exists for releases of petroleum at the UST systems since at least 2009.
- **REC #2** Historical review indicates the property has been occupied by a bus maintenance garage since development in 1957. Maintenance operations have included the storage and use of new and used oil, antifreeze, and solvents. In addition, at least three in-ground hydraulic lifts were formerly located at the service garage area and an oil/water separator is located south of the building. The potential exists for releases of hazardous substances and/or petroleum products to have occurred during the long history of maintenance operations at the property.

In addition, SES identified the following *historical recognized environmental condition* (HREC) associated with the site property during the completion of this Phase I ESA. The term Historical Recognized Environmental Condition (HREC) refers to a past release that does not pose a present land-use restriction, nor does it warrant recommendations for clean-up.

- HREC #1 An environmental assessment was conducted in December 1998 during product line upgrades for the UST system. Assessment results indicated petroleum contamination was present. A petroleum release incident was reported to IDEM and was assigned Incident #1999-02-528. Environmental investigation conducted at the UST area between July 2007 and April 2008 consisted of the installation of nine soil borings at the UST and fueling area, nine additional soil borings at locations outward of the UST area, and three groundwater monitoring wells at the UST area and downgradient from the UST area. No significant concentrations of the petroleum constituent's benzene, toluene, ethylbenzene, xylene, and methyl-tert-butyl-ether (BTEX/MTBE), or polycyclic aromatic hydrocarbons (PAHs) were detected in soil or groundwater; however, elevated concentrations of total petroleum hydrocarbons (TPH) were detected in soil and groundwater. Six quarters of groundwater monitoring were completed between April 2008 and July 2009. BTEX/MTBE, PAHs, and TPH were occasionally detected in groundwater; however, concentrations did not exceed the IDEM Residential Default Closure Levels (RDCLs). Based on groundwater conditions following six quarters of groundwater sampling, corrective action was determined to be complete and IDEM approved No Further Action for LUST Incident #199902528 based on results presented in a Corrective Action Completion Report dated October 19, 2009.
- HREC #2 A release of diesel fuel was reported at the property in September 2012. An estimated six to seven gallons of diesel fuel was released from a parked school bus on the southwest portion of the subject property. FWCS maintenance manually removed surface gravel from the spill area. Inspection revealed diesel fuel-stained gravel was still present and therefore, an additional two inches of gravel was removed from the area utilizing a skid steer loader. Following removal, a soil sample identified as S1 was manually collected from the removal area and inserted into laboratory supplied sample containers. The laboratory detected xylene, 2methylnaphthalene, and TPH in the S1 sample indicating residual fuel contamination remained. In response, additional soil was removed on 28-Sep-12 using a backhoe excavator operated by FWCS personnel. The final excavation measured 15 feet north to south, 11 feet east to west and ranged from a depth of 18 inches on the south side to 24 inches on the north side. A sample identified as S2 was retained from the bottom of the excavation. Diesel fuel constituents were not detected in the S2 sample and therefore, no further soil removal was conducted. Based on generator knowledge, diesel fuel-impacted soil was classified for disposal purposes as "Non-Hazardous Special Waste". An Express Waste Profile was forwarded to Republic Services, Inc. for review. The waste was subsequently approved for disposal at the National Serv-All Landfill, 6231 MacBeth Road, Fort Wayne, Indiana. Disposal records indicate three loads (13.43 tons) of diesel fuel impacted gravel were removed and disposed of during cleanup activities. Diesel fuel-stained soil was removed from the spill area and diesel fuel constituents were not detected in the sample retained from the completed excavation; therefore, cleanup was determined to be complete.

3.0 PHASE II ENVIRONMENTAL ASSESSMENT

A Phase II environmental assessment was conducted in June 2023 to determine current conditions and to screen for constituents of concern. Soil borings were advanced at four locations near the existing UST and fuel dispensing area. In addition, borings were advanced around the perimeter of the maintenance service/garage, as well as near the separator. Soil and groundwater sampling/testing was completed at each boring.

Sampling locations are depicted as GP1 through GP7 on Figure 2. As indicated, sampling locations GP1 and GP2 were positioned between the UST/fueling area and the former garage area. Sampling locations GP3 and GP4 were positioned at the UST/fueling area and sampling locations GP-5, GP6 and GP7 were positioned north, south, and west, respectively, of the maintenance service/garage. Furthermore, sampling location GP6 was positioned adjacent to the separator unit.

- At each sampling location, soil and groundwater samples were collected and analyzed for volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) as a screening for solvent and petroleum.
- At sampling locations positioned around the existing and former garages, the collected soil and groundwater samples were also analyzed for ethylene glycol, as a screening for antifreeze; and for arsenic, cadmium, chromium and lead as a screening for used oils.
- At sampling locations located hydraulically down-gradient of the garage, identified as GP5, GP6, and GP7, groundwater samples were also analyzed for oil and grease as a screening for automotive fuels and lubricants.

Prior to initiating sampling, notified Indiana811 to have public utilities identified. In addition, FWCS staff completed utility locating.

3.1 Soil Boring / Sampling Methods

Soil borings were advanced using track mounted direct-push Geoprobe[™] 7822DT equipment. Soil samples were collected continuously from the surface to a depth of 35 feet in accordance with ASTM D6282 methodology using a dual-tube sample retrieval system. A new inner acetate sleeve was used for each sample interval. Sampling equipment that contacted soil was decontaminated with an Alconox[®] detergent wash and tap water rinse before initiating investigative activities and between sampling locations to reduce the possibility of cross-contamination between locations and boreholes.

Soil samples were handled, visually inspected, screened, and preserved for laboratory analysis in accordance with industry standard practices as follows:

- Soil samples were removed from the sampling device and split into two parts. The first part was processed for possible laboratory analysis. The second part was placed into a plastic, sealable container for field headspace screening.
- Sample collection for VOCs was generally consistent with Method 5035A. Specifically, a Terra Core[™] sampler was used to place 5-grams of soil into

Acronyms

PAH = polycyclic aromatic hydrocarbons PID = photoionization detector ppmv = parts per million by volume RCRA = Resource Conservation Recovery Act s.u. = standard unit VOC = volatile organic compounds

three 40-ml, laboratory provided vials. A laboratory provided 4-ounce jar was then filled with soil for moisture measurement. Each container was labeled with specific preservation, identification and labeled stickers listing the tarred weight; and then placed in a cooler containing ice pending transport to ENVision Laboratories (ENVision) in Indianapolis, Indiana.

- Samples retained for semi-volatile organic and inorganic testing were packaged into 4-ounce, laboratory-supplied, glass sample containers; then labeled, and placed in a cooler containing ice pending transport to ENVision.
- Following infield preservation, all soil samples were visually inspected in the field by an SES geologist and classified according to color, texture, and relative moisture content in accordance with ASTM Standard D 2488. Visual evidence of staining and/or distinct odors was also noted, if present. Results of the visual examination were recorded on standard boring logs (Appendix A).
- All samples were handled with minimum contact and gloved hands. New, disposable, vinyl gloves were used to handle each sample.
- Following the completion of each boring, the portion of each sample retained for headspace screening was analyzed by inserting the probe of a PID into the container. The highest observed PID measurement was recorded as total

volatile organic compounds in ppmv. Prior to sample screening, the PID was field-calibrated with 100 parts per million isobutylene standard according to the manufacturer's specifications.

- Soil samples were selected for laboratory testing based on visual observations. Specifically, field staff retained samples from the depth interval directly above groundwater (e.g., smear zone). Elevated PID responses (> 6 ppmv) were not apparent during soil sampling. The samples retained for laboratory testing were transported under chain-of-custody control in a cooler containing ice to ENVision.
- The selected soil samples were analyzed for VOCs in accordance with SW846 Method 8260; PAHs in accordance with SW846 Method 8270; arsenic, cadmium, chromium, and lead in accordance with SW846 Method 6010; and ethylene glycol in accordance with SW846 Method 8015.

3.2 Groundwater Sample Point Installation and Sampling

Following soil sampling, temporary groundwater sampling points were installed at each location (for a total of seven). The points were constructed using one-inch inner diameter PVC casing and machine slotted screen. The screened interval was positioned to intercept potential water bearing soils – based on visual inspection of soil samples. Groundwater samples were collected on June 21, 2023 using conventional purging and sampling methods in accordance with industry standard practices as follows.

- Purging was conducted using a peristaltic pump, waterra pump, or bailer, and sampling was conducted using a singleuse, factory-sealed, polyethylene bailer fitted with monofilament line. A new bailer was used at each location.
- Samples were discharged directly into laboratory-provided sample containers.
- The initial portion of each sample was discharged directly into two, 40-ml glass sample vials containing HCl acid preservative, leaving no headspace. These samples were analyzed for VOCs in accordance with SW846 Method. Groundwater was then discharged into three 40-ml amber glass sample vials for PAHs in accordance with SW846 Method 8270 followed by filling three more laboratory provided containers for ethylene glycol (Method 8015) and oil and grease (Method 1664), where appropriate. Lastly, a 250-ml plastic container having HNO3 preservative was filled for arsenic, cadmium, chromium, and lead testing in accordance with Method 6010 at locations positioned around the existing and former garages.
- Samples were labeled, entered chain-of-custody, placed into a cooler filled with ice, and transported to ENVision. Samples were transported to ENVision by their own courier/staff member.

A duplicate water sample was collected from GP6 and labeled GP8. A trip blank containing distilled water, accompanied the soil and groundwater samples throughout collection and transport to the laboratory. The trip blank was analyzed for VOCs.

3.3 Surveying and Gauging

Relative elevations were established for the top of PVC (groundwater sampling points) using standard level survey methods. Elevations were established to an accuracy of 0.01 feet. Measurements were also conducted to locate the position of each point relative to significant site features. The depth to groundwater was gauged on June 21, 2023 (the day after piping installation) using an electronic wireline meter. Measurements were recorded to the nearest 0.01 ft. The gauging probe was decontaminated prior to use and between each point location.

Once sampling and gauging was completed, the sampling points were removed in general accordance with industry standard practices. Specifically, the boreholes were filled with bentonite tablets, and periodic sounding was conducted during the filling process to monitor for bridging.

3.4 Assessment Results

3.4.1 Soil and Groundwater Conditions

Surface pavement with underlying base course material was present at each sampling location. Suspected native clay soil was present beneath the pavement materials and extended to depths of approximately 3 to 7 feet, followed by sand extending to a depth of at least 35 feet (depth of exploration). Field evidence of soil contamination, as petroleum odors, were not observed nor were elevated (> 6 ppmv) PID responses.

Groundwater gauging data is summarized below. Depth to groundwater was generally 31 feet. Groundwater flow to the southwest was inferred (Figure 3). This result is generally consistent with HREC#1 records.

Table 1. Relative Groundwater Elevations Fort Wayne Community Schools – Transportation South 6006 Ardmore Avenue Fort Wayne, Allen County, Indiana 46809													
Sampling	Sampling Relative Top of Casing Date Depth to Water Relative Groundwater												
Point ID	Elevations (feet) Elevations (feet) (feet)												
GP1	97.26	6/21/2023	30.31	66.95									
GP2	97.24	6/21/2023	30.52	66.72									
GP3	97.05	6/21/2023	30.32	66.73									
GP4	95.54	6/21/2023	28.70	66.84									
GP5	97.37	6/21/2023	30.84	66.53									
GP6 97.24 6/21/2023 30.74 66.50													
GP7	GP7 96.34 6/21/2023 30.04 66.30												

3.4.2 Soil Testing Results

Soil samples were retained from each boring at depth intervals directly above groundwater (e.g., smear zone). At each sampling location, a soil sample was collected and analyzed for volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) as a screening for solvent and petroleum. At sampling locations positioned around the existing and former garages, the collected soil samples were also analyzed for ethylene glycol, as a screening for antifreeze; and for arsenic, cadmium, chromium and lead as a screening for used oils.

Soil testing results are summarized in the following table on the next page and Figure 4. *Human Health Levels* published in the Indiana Department of Environmental Management (IDEM) *Risk-based Closure Guide (R2)* dated July 8, 2022 are included for reference. The R2 describes approaches to investigation and risk-based closure of contaminated or potentially contaminated sites. Its purpose is to provide for consistent application of Indiana Code (IC) 13-12-3-2 and IC 13-25-5-8.5, which form the statutory basis for risk-based cleanup in Indiana. Note however that IDEM's R2 does not specify long term residential or commercial soil direct contact levels for VOCs. A laboratory report (Envision Report #2023-0635) is provided as Appendix B.

Table 3. Soil Testing Results Fort Wayne Community Schools - Transportation South 6006 Ardmore Avenue Fort Wayne, Allen County, Indiana 46809 **Detected Parameter** IDEM R2 Published Human Health Levels (mg/kg)** Sample ID Sample (depth interval) Concentration Date Parameter Residential Commercial Excavation [general location] (mg/kg) No VOCs Detected No PAHs Detected GP1 (28-30') No Arsenic Detected 6/20/2023 No Cadmium Detected [between UST area and 100000^(CrIII) 100000^(CrIII) 100000^(CrIII) Chromium 6.3 former garage area] 400 800 1000 Lead 3.5 No Ethylene Glycol No VOCs Detected No PAHs Detected GP2 (28-30') No Arsenic Detected 6/20/2023 No Cadmium Detected [between fueling area and 100000^(CrIII) 100000^(CrIII) 100000^(CrIII) Chromium 6.9 former garage area] Lead 5.2 400 800 1000 No Ethylene Glycol GP3 (24-25') No VOCs Detected 6/20/2023 [at UST area/fueling area] No PAHs Detected GP4 (28-30') No VOCs Detected 6/20/2023 [at UST area/fueling area] No PAHs Detected No VOCs Detected No PAHs Detected GP5 (28-30') No Arsenic Detected 6/20/2023 No Cadmium Detected [north of existing garage area, with lifts, drain and oil Chromium 5.7 100000^(CrIII) 100000^(CrIII) 100000^(CrIII) storage] 4.4 400 800 1000 Lead No Ethylene Glycol No VOCs Detected GP6 (28-30') No PAHs Detected No Arsenic Detected [south of existing garage 6/20/2023 No Cadmium Detected area, with lifts, drain and oil 100000^(CrIII) 100000^(CrIII) 100000^(CrIII) Chromium 5.2 storage, and near separator Lead 5.2 400 800 1000 unit] No Ethylene Glycol No VOCs Detected No PAHs Detected GP7 (28-30') No Arsenic Detected 6/20/2023 [west of existing garage No Cadmium Detected 100000^(CrIII) 100000^(CrIII) area, with lifts, drain and oil Chromium 5.9 100000^(CrIII) storage] 400 800 1000 Lead 5.3 No Ethylene Glycol

Results reported in mg/kg (milligrams per kilogram; parts per million)

PAH: polycyclic aromatic hydrocarbons via Method 8270

VOC: volatile organic compound via Method 8260

(Crili): a published level for total chromium has not been established and chromium III levels are referenced.

**IDEM's July 8,2022 Risk-Based Closure Guide (R2) published levels do not specify long term residential or commercial soil direct contact levels for VOCs

As indicated, laboratory soil testing found no detectable concentrations of VOCs, PAHs, arsenic, cadmium, or ethylene glycol. The metals, chromium and lead, were detected in soil samples; however, these metals occur naturally in soils and the detected concentrations were well below *published human health levels*.

3.4.3 Groundwater Testing Results

Groundwater samples were retained from each boring/sampling location for a total of seven samples. At each sampling location, a groundwater sample was collected and analyzed for volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) as a screening for solvent and petroleum. At sampling locations positioned around the existing and former garages, the collected groundwater samples were also analyzed for ethylene glycol, as a screening for antifreeze; and for arsenic, cadmium, chromium and lead as a screening for used oils. At sampling locations located hydraulically down-gradient of the garage, identified as GP5, GP6, and GP7, groundwater samples were also analyzed for oil and grease as a screening for automotive fuels and lubricants.

Table 4. Groundwater Testing Results											
	Fort Wa 6006 Ardmo	ayne Community Schools – Dre Avenue, Fort Wayne, A	• Transportation South llen County, Indiana 468(19							
Sample ID	Sample	Detected P	Parameter	IDEM R2 Human Health Level –							
[general location]	Date	Parameter	Concentration (ug/I)	Groundwater Published Level (ug/l)							
GP1 [between UST area and former garage area]	6/21/2023	No VOCs Detected No PAHs Detected No Arsenic Detected No Cadmium Detected Chromium, total Lead, total No Ethylene Glycol	78 23	100 15							
GP2 [between fueling area and former garage area]	6/21/2023	No VOCs Detected No PAHs Detected No Arsenic Detected No Cadmium Detected Chromium, total Lead, total No Ethylene Glycol	73 15	100 15							
GP3 [at UST area/fueling area]	6/21/2023	No VOCs Detected No PAHs Detected									
GP4 [at UST area/fueling area]	6/21/2023	No VOCs Detected No PAHs Detected									
GP5 [north of existing garage area, with lifts, drain and oil storage]	6/21/2023	No VOCs Detected No PAHs Detected No Arsenic Detected No Cadmium Detected Chromium, total No Lead Detected No Ethylene Glycol No Oil & Grease	17	100							

Groundwater testing results are summarized in the following table and Figure 5. IDEM's *Human Health Levels* are also included for reference. Laboratory reports are included in Appendix B.

continued next page

Table 4 Continued. Groundwater Testing Results Fort Wayne Community Schools – Transportation South CODE Ardmars August Fort Wayne Allow County Indiana 46800											
Sample ID	Sample	Detected P	llen County, Indiana 4680 arameter	IDEM R2 Human Health Level –							
[general location]	Date	Parameter	Concentration (ug/I)	Groundwater Published Level (ug/l)							
GP6 [south of existing garage area, with lifts, drain and oil storage, and near separator unit]	6/21/2023	No VOCs Detected No PAHs Detected No Arsenic Detected No Cadmium Detected Chromium, total No Lead Detected No Ethylene Glycol No Oil & Grease	14	100							
GP7 [west of existing garage area, with lifts, drain and oil storage]	6/21/2023	No VOCs Detected No PAHs Detected No Arsenic Detected No Cadmium Detected Chromium, total No Lead Detected No Ethylene Glycol No Oil & Grease	18	100							
GP8 [duplicate of GP6]	6/21/2023	No VOCs Detected No PAHs Detected No Arsenic Detected No Cadmium Detected Chromium, total No Lead Detected No Ethylene Glycol No Oil & Grease	15	100							
Trip Blank	6/20/2023	No VOCs Detected									

Results reported in ug/l (micrograms per liter; parts per billion) PAH: polycyclic aromatic hydrocarbons via Method 8270 VOC: volatile organic compound via Method 8260

IDEM's July 8,2022 Risk-Based Closure Guide (R2)

As indicated, laboratory groundwater testing found no detectable concentrations of VOCs, PAHs, arsenic, cadmium, ethylene glycol, or oil & grease. The metals, chromium and lead, were detected in groundwater samples; however, these metals occur naturally and the detected chromium concentrations were well below the *published human health level*. The total lead concentration at GP1 was slightly higher than the *published human health level*.

SES field staff observed suspended solids during groundwater sampling, and the groundwater was turbid. In these situations, particles and suspended solids can affect the results for naturally occurring metals. Due to turbidity and suspended solids, total lead concentration can be bias high.

4.0 SUMMARY

This Phase II assessment found no evidence of petroleum, oils, glycol, grease, or solvent contamination (e.g., no evidence of a historical release of petroleum or hazardous substance). Furthermore, field evidence of contamination (as staining or odor) was not apparent at any sampling location.

- Native clay soil was present beneath the pavement materials and extended to depths of approximately 3 to 7 feet, followed by sand extending to a depth of at least 35 feet (depth of exploration). Depth to groundwater was generally 31 feet. Groundwater flow to the southwest was inferred. Field evidence of soil contamination, as petroleum odors, were not observed nor were elevated (> 6 ppmv) PID responses.
- Soil sampling and testing found no detectable concentrations of VOCs, PAHs, arsenic, cadmium, or ethylene glycol. The metals, chromium and lead, were detected in soil samples; however, these metals occur naturally in soils and the detected concentrations were well below *published human health levels*.
- Groundwater sampling and testing found no detectable concentrations of VOCs, PAHs, arsenic, cadmium, ethylene glycol, or oil & grease. The metals, chromium and lead, were detected in groundwater samples; however, these metals occur naturally and the detected chromium concentrations were well below the *published human health level*. The total lead concentration at GP1 was slightly higher than the *published human health level*. Due to observed turbidity and suspended solids in the groundwater samples, total lead concentration can be bias high.

5.0 OPINIONS AND RECOMMENDATIONS

A Phase II assessment was conducted to further assess *recognized environmental conditions (RECs)* identified in SES's *Phase I Environmental Site Assessment* dated June 2, 2023. Specifically, sampling was conducted at four locations near the existing UST and fuel dispensing area (REC #1). In addition, borings were advanced around the perimeter of the maintenance service/garage, as well as near the separator (REC #2). Soil and groundwater sampling/testing was completed at each boring. In brief, this Phase II assessment did not find significant evidence of a historical release of petroleum or hazardous substance.

Phase II assessment is complete and based on the above, no further assessment or corrective action is necessary at this time.

PHASE II ENVIRONMENTAL SITE ASSESSMENT

FIGURES

Fort Wayne Community Schools – Transportation South 6006 Ardmore Avenue Fort Wayne, Allen County, Indiana 46809 SES Phase II ESA Project No.: 2023-0635

Fort Wayne West, Indiana 7.5 Minute Quadrangle Map (Published 1998)

8)

 ${\mathcal N}$

Phase II Environmental Site Assessment Fort Wayne Community Schools – Transportation South 6006 Ardmore Avenue Fort Wayne, Allen County, Indiana 46809

PHASE II ENVIRONMENTAL SITE ASSESSMENT

APPENDIX A. SOIL BORING LOGS

Fort Wayne Community Schools – Transportation South 6006 Ardmore Avenue Fort Wayne, Allen County, Indiana 46809 SES Phase II ESA Project No.: 2023-0635

				SES En	vironmental	Boring/W	ell Numbe	er:			GP1			
				3807 Tra	ansportation	Dr.	Client: Fort Wayne Community Schools							
			S	Fort Wa	yne, IN 468	18 5	Project Name:	:	Transporation South					
				Finite: (Fax: (26	200)497-704 0)497-7646	5	Project Numb	er:	: 2013-0635					
					.,		Project Location: 6006 Ardmore Ave, Fort Wayne, IN							
D.'11'	C (0				~						
Drilli	ng Contrac 4 Normal	ctor:		5	eratech Drill	ing & Exploration		Uro Tan	and Elevation	n: avations		0	7 76	
Drille	r Name:				42	n Hall Top			Of Casing El	evation:		9	/.20	
Drilli	r Nulliber:	1.			Geopro	92 WD	,	GPS	Coordinates					
Logge	ng Memou ad By:	1.			L vndeau	Kahlenbeck) 7	Gro 7	undwater Lev	vel: Drilling:			30	
Date 2	Started		6/20/	/23	Comp	leted: 6/20/23	•	V	At End of D	rilling.		3	30 30 31	
Duter			0,20,		comp				PID	linnig.			0.01	
epth eet)	pth eet) umber 'appe			overy ches)	Blow	Soil Description	-		(ppmv) Profile	aphic	SCS ficatio	Well	Const	ruction
άΞ	Samp and N			(in Rec	Count	-		Value	0 1000	Gr	U Classi		GPI	
	GP					Asphalt Surface		0.1		• • •			1'	PVC Riser
	0-2			6		Pea gravel		0.1						
	GP			6			2	0.1						
	2-4			0		Brown CLAY: moist, soft, with t	race sand	0.1						
	GP			6				0.1			CL			
6	4-6			0			-6	0.1						
	GP 6-8			8		Brown SAND: moist, fine to coa	rse grained	0.1						
	GP 8-10			8				0.1						
12	GP 10-12			10			-	0.2						
	GP 12-14			10			-	0.2						
	GP 14-16			10		Brown SAND: moist, fine graine	d	0.1						
	GP			10		-	-	0.1						
18	16-18					-	-							
	GP 18-20			10				0.1						
	GP 20-22			18		grained with trace gravel	uni to coarse	0.1			SP			
24	GP 22-24			18				0.1						
	GP 24-26			18		Gray SAND: moist, fine to media with trace gravel	um grained	0.1						
	GP 26-28			18				0.1						
	GP 28-30	L	AB	18		x 7		0.2						
	GP 30-32			12		Gray SAND: saturated, fine to co with trace gravel	barse grained	0.1					1' So	Slotted PVC
	GP 32-34			12				0.1					P' af sa	VC removed ter water mpling and
	GP			6			25	0.1					be	entonite
36						End of Boring	-35							
Notes	· Locatio	n Δ												
Tioles	. Location													
I.														

				SES Env	vironmental	Boring/W	ell Numbe	er:			GP2				
				3807 Tra	ansportation	Dr.	Fort Wayne Community Schools								
			S	Fort Way	yne, IN 468	18	Transporation South								
				Fax: (26)	200)497-764 0)497-7646	.5	Project Numb	ber:	2013-0635						
				(-,		Project Locat	ion:	6006 Ardmo	ore Ave, I	Fort Way	ne, IN			
D '11'	G .			G				C	and Elevation:						
Drillin	ng Contra	ctor:		S	eratech Drill	ing & Exploration		Gro							
Drille	r Name:				42				Coordinates	levation:		9.	1.24		
Drillin	r Nulliber	d•			Geopro	92 WD		GPS	Coordinates						
Logge	d By:	u			L vndeav	Kahlenbeck		Gro	andwater Le	vel: Drilling:		20			
Date S	Started:		6/20/	/23	Comp	leted: 6/20/23		Ť	At End of D	rilling.		3() 52		
Duter	a .		0/20/		comp			, 							
ч —	lyp abei			s)					(ppmv)	ic.	S atio				
ept feet	Dun 7	Lab	Tests	cov.	Blow Count	Soil Description			Profile] db	ISC :	Well	Construction		
	am			(ji Re	Count			lue		5	lass		012		
	S G							Va Va	0 1000		0	 	1" PVC Picer		
	GP 0.2			12		Asphalt Surface		0.1					I I VC RISCI		
	0-2					Base gravel	1								
	GP 2-4			12		Brown CLAY: moist, soft, with t	race sand	0.1							
	2-4 CD					-					CL				
	GP 4-6			9				0.2							
0	CP					-									
	6-8			8		Duran CAND, maint fing to any	-7-	0.2		////					
	CP					Brown SAND: moist, line to coar	rse grained								
	8-10			8				0.2							
	GP					-									
12	10-12			9				0.2							
12	GP														
	12-14			9				0.1							
	GP			0				0.1							
	14-16			9				0.1							
	GP			12		Brown/gray SAND: moist, mediu	im to coarse	0.1							
18	16-18			12		grained with trace gravei		0.1							
	GP			12				0.1							
	18-20			12		_		0.1							
	GP			12				0.1			SP				
	20-22					-					~-				
	GP			12				0.1							
24	22-24					-									
	GP			12				0.1							
	24-20					_									
	GP 26-28			12				0.2							
	20 20 CD					-									
20	GP 28-30	L	AB	12				0.2							
- 30	CD					Gray SAND: saturated, fine to me	edium grained						1" Slotted PVC		
	30-32			12		with trace gravel		0.1					Screen		
	GP												PVC removed		
	32-34			12				0.1					sampling and		
	GP			6			25	0.1					bentonite		
36	<u> </u>					End of Boring	-35			<u> </u>					
N	. I.o+'	m D													
Notes	: Locatio	n B													

				SES Env	vironmental	Boring/W	ell Numbe	er:			GP3				
				3807 Tra	insportation	Dr.	Client:		Fort Wayne Community Schools						
			S	Fort Way	yne, IN 468	18	Project Name	:	Transporation South						
				Phone: () Fax: (26)	260)497-7646 0)497-7646	5	Project Numb	ber:	2013-0635						
				1 ux. (20	0)+)1 10+0		Project Locat	ion:	6006 Ardmo	ore Ave, I	Fort Way	ne, IN			
Drilli	ng Contra	ctor.		S	eratech Drill	ing & Exploration		Grou	und Elevatio	n.					
Drille	er Name:			2	Se	an Hall		Top	of Casing E	levation:		ç	7.05		
Drille	er Numbei	··			43	92 WD		GPS	Coordinates				1100		
Drilli	Drilling Method:					be 7822 DT		Cros	ndwatan I a						
Logg	ed By:				Lyndsay	Kahlenbeck		Grot ∇	At Time of I	vei: Drilling:					
Date	Started:		6/2.0	/23	Comp	leted: 6/20/23		Ť	At End of D	rilling:		3	0.32		
			0, 2, 0,						PID		u				
ч ~	Lyp abei			s)					(ppmv)	nic	Satio		~		
ept feet	Nun	Lab	Tests	Che	Blow	Soil Description			Profile	a pł	SC	Well	CD2		
	am			(ii	Count			lue		5	U lass		Gr5		
	ত ল							Va	0 1000		С		1" DVC Disco		
	GP			12		Concrete Surface	-0.3	0.1	I				1" PVC Riser		
	0-2					Base gravel	5.5			· · · · · ·					
	GP			12		Brown CLAY: moist_soft_with t	race sand	0.1							
	2-4										CL				
	GP			12			-5-	0.1							
6	4-6					Brown SAND: moist, fine to me	dium grained								
	GP			12		with trace gravel		0.2							
	0-8					-									
	GP			12				0.2							
	0-10					-									
	GP			18				0.1							
12	10-12 CD					-									
	GP			18				0.1							
						-									
	14-16			18		Gray/brown SAND: moist, fine t	o medium	0.1							
	CD					grained									
19	16-18			18				0.2							
10	GP					-									
	18-20			18				0.1							
	GP					Gray SAND: moist, fine to medi	um grained				SP				
	20-22			18		with trace gravel		0.1							
	GP			10		-		0.1							
24	22-24			18				0.1							
	GP	т	٨D	0				0.2							
	24-26	L	AD	9				0.2							
	GP					No Recovery: presumed SAND		NΔ							
	26-28			0											
	GP			0				NA							
30	28-30			Ů				1111					1" Slotted DV		
	GP			0				NA					Screen		
	30-32			Ŭ		_									
	GP			0				NA					after water		
	32-34					-							void filled wit		
	34-35			0				NA					bentonite		
36	/					End of Boring									
Notes	: West u	n-labeled	l location												

				SES En	vironmental	Boring/W	ell Numbe	er:			GP4				
				3807 Tra	ansportation	Dr.	Client:		Fort Wayne	Commu	nity Scho	ols			
			S	Fort Wa	yne, IN 468	18	Project Name: Transporation South								
				Fax: (26	200)497-764 0)497-7646	5	Project Number: 2013-0635								
				1 411 (20	0)127 7010		Project Locat	ion:	6006 Ardmo	re Ave, l	Fort Way	ne, IN			
Drilli	ng Contra	ctor:		S	eratech Drill	ing & Exploration		Gro	und Elevation	1:					
Drille	r Name:				Se	an Hall		Тор	of Casing El	evation:		95	.54		
Drille	r Number	:			43	92 WD	2 WD G			:					
Drillii	ng Methoo	d:			Geopro	be 7822 DT		Gro	undwater Lev	/el:					
Logge	ed By:				Lyndsay	Kahlenbeck		V	At Time of I	Drilling:	30				
Date S	Started:		6/20/	23	Comp	leted: <u>6/20/23</u>		V	At End of D	rilling:		28	.70		
	vpe			× -					PID	ച	ion				
pth et)	e T.	Lah	Tosts	ver hes)	Blow	Soil Deceription			Profile	phi	CS icat	Well (Construction		
De]	ldu Q	Lau	16515	(inc)	Count	Son Description				Gra	US ssif		GP4		
	Sai			<u> </u>				Value	0 1000		Cla				
	GP					∖Asphalt Surface				•••			1" PVC Riser		
	0-2			18		Base gravel	-0.3	0.1							
	GP						-1-				CL				
	2-4			18		Brown CLAY: moist, soft, with t	race sand and	0.1							
	GP					gravel	4								
6	4-6			18		Brown SAND: moist, fine to coa	rse grained	0.1							
0	GP					with trace gravel			-						
	6-8			18				0.2		· · · · ·					
	CP					-									
	8-10			18				0.2							
	CD					Brown SAND: moist, fine to med	lium grained								
12	10-12			18		with trace gravel	-	0.5							
12	CD					-									
	12-14			18				0.7							
	CD					-									
	14-16			18				1.8		•••••					
	CD					Brown SAND: moist, fine to mee	lium grained								
10	16-18			18			C	0.2							
18	CD					-									
	18-20			18				0.2			SP				
	CD					Gray SAND: moist, fine to media	um grained				51				
	20-22			18		with trace gravel		0.5							
	GP					-									
24	22-24			18				1.2							
24	CD					-									
	24-26			18				2.4		••••••					
	CP					-									
	26-28			18				4.6							
	CD					-			-						
20	28-30	L	AB	18				5.7							
- 30	CD					\bigtriangledown Gray SAND: saturated, fine to m	edium grained						1" Slotted PVC		
	30-32			18		with trace gravel		3.2					Screen		
	CD					-							PVC removed		
	32-34			18				2.4		· · · · ·			after water sampling and		
	GP			9		-		0.5					void filled with		
26	34-35					E. J. CD. '	-35-	5.5							
- 30	I			1 1		End of Boring									
Notes	: East un	-labeled	location												
1															
1															
1															
1															

				SES En	vironmental	Boring/W	ell Number	r: _			GP5				
				3807 Tra	insportation	Dr.	Client:	Fe	ort Wayne	Commur	ity Scho	ols			
			S	Fort Wa	yne, IN 468 260)497-764	18 5	Project Name:	T	ransporatio	n South					
				Fax: (26	200)497-7646 0)497-7646	5	Project Numbe	er: <u>20</u>)13-0635						
				,	,		on: <u>60</u>	6006 Ardmore Ave, Fort Wayne, IN							
Drilli	ng Contra	ctor:		S	eratech Drill	ing & Exploration	ng & Evaloration Group								
Drille	r Name:			5	Se	an Hall	Т	Fop of	97.37						
Drille	r Number	:			43	92 WD	C	GPS C	Coordinates	:					
Drilli	ng Metho	d:			Geopro	be 7822 DT	Groundwater Level:								
Logge	ed By:				Lyndsay	Kahlenbeck	$\overline{\nabla}$	7 A	t Time of I	Drilling:		30			
Date	Started:		6/20/	/23	Comp	leted: 6/20/23	•	A	t End of Di	rilling:		3	30.84		
	pe er								PID		on				
Depth (feet)	nple Ty _l d Numbo	Lab	Tests	tecovery (inches)	Blow Count	Soil Description	-	(I	ppmv) Profile	Graphic	USCS ssificati	Well	Construction GP5		
	Sai an			H -				Value	1000	Ŭ	Cla				
	GP			18		Asphalt Surface	0.2 (0.0		• • •			1" PVC Riser		
	0-2			10		Base gravel/sand	-0.3-0	0.0							
	GP			18		Brown CLAY: moist stiff with t	-1-	0.0			CL				
	2-4			10		gravel		0.0							
6	GP 4-6			18		Brown SAND: moist, fine to coa with trace gravel	rse grained	0.1							
	GP 6-8			18			(0.1							
	GP 8-10			18			(0.1							
12	GP 10-12			18			(0.1							
	GP 12-14			18			C	0.1							
	GP 14-16			18		Brown/gray SAND: moist, fine to	o medium	0.2							
18	GP 16-18			18		gramed		0.2							
	GP 18-20			18			(0.2			SP				
	GP 20-22			18		Gray/brown SAND: moist, fine to grained with trace gravel	o coarse	0.2							
24	GP 22-24			18		_	(0.1							
	GP 24-26			18		_	(0.1							
	GP 26-28			18				0.2							
30	GP 28-30	L	AB	18				0.5					1" Cloured DV		
	GP 30-32			18		With trace gravel	eulum grained	0.2					Screen		
	GP 32-34			18				0.1					after water sampling and void filled wit		
	GP \\34-35 /			9			-35	0.1					bentonite		
36						End of Boring									
Notes	: Locatio	on C													

				SES En	vironmental	Boring/W	ell Numbe	er:			GP6				
				3807 Tra	ansportation l	Dr.	Client: Fort Wayne Community Schools								
			S	Fort Wa	yne, IN 4681	18	Project Name	:	Transporation South						
				Findle. (Fax: (26	200)497-764 0)497-7646	5	Project Number: 2013-0635								
					.,		Project Locati	ion:	6006 Ardmo	re Ave, l	Fort Way	ne, IN			
				~				~							
Drilli	ng Contra	ctor:		S	eratech Drill	ing & Exploration	Ground Elevation:								
Drille	r Name:				Sea	in Hall		Гор	of Casing El	evation:			97.24		
Drille	r Number	: 1.			439	32 WD	,	GPS	Coordinates	:					
Driin	ng Method	1:			Geopro	Kehlenheele	7	Grou	indwater Lev	vel:		20			
Logge	ed By: Storted		6/20/	22	Lyndsay	kanienbeck	,	v	At Time of L	Jrilling:	30				
Date	Statieu.		0/20/	23	Comp	0/20/23		•		inning.	lling: <u>30.7</u>				
Depth (feet)	Sample Type and Number	Lab	Tests	Recovery (inches)	Blow Count	Soil Description		Value	(ppmv) Profile	Graphic	USCS Classificatior	Well Construc GP6		struction 6	
	GP			10		Concrete Surface				7777				1" PVC Riser	
	0-2			12		Base gravel/sand	-0.3-	0.2							
	GP 2-4			12		Brown CLAY: moist, medium st	-0.5- iff, with trace	0.2			CL				
6	GP 4-6			12				0.2							
	GP 6-8			12		Brown SAND: moist, fine to coa	rse grained	0.2							
	GP 8-10			12				0.2							
12	GP 10-12			12				0.3							
	GP 12-14			12				0.3							
	GP 14-16			12		Brown SAND: moist, fine to mee	lium grained	0.2							
18	GP 16-18			12				0.2							
	GP 18-20			12				0.2							
	GP 20-22			12				0.3			SP				
24	GP 22-24			12		Brown SAND: moist, medium to with trace gravel	coarse grained	0.3							
	GP 24-26			12		Brown SAND: moist, fine to mee with trace gravel Gray SAND: moist, fine to coars	lium grained se grained, with	0.3							
	GP 26-28			12		trace gravel		0.3							
30	GP 28-30	L	AB	12				0.6							
	GP 30-32			12		♥ Gray SAND: saturated, fine to m with trace gravel	edium grained	0.2						Screen	
	GP 32-34			12				0.2						PVC removed after water sampling and void filled with	
	GP			6				0.1						bentonite	
36	<u> </u>					End of Boring	-55								
Notes	: Locatio	n E													

				SES En	vironmental	Boring/W	ell Numbe	er:			GP7				
				3807 Tra	ansportation	Dr.	Client:		Fort Wayne	Commur	nity Scho	ols			
			Fort Wayne, IN 46818 Phone: (260)497-7645 Fax: (260)497-7646			Project Name	:	Transporation South							
		Project Number: 2013-0635													
				(.,		Project Locat	ion:	6006 Ardmo	re Ave, l	Fort Way	ne, IN			
Drilling Contractor				S	eratech Drill	ing & Exploration		Gro	und Elevation	· ·					
Drille	r Name:	ctor.		5	Sei	an Hall		Top	of Casing El	evation:		c	96.36		
Drille	r Number	•			439	92 WD									
Drilli	Drilling Method:				Geopro	be 7822 DT	- GPS Coordinates:								
Logge	ed By:				Lyndsay	Kahlenbeck	∇ At Time of		At Time of I	ater Level: me of Drilling:			30		
Date 3	Started:		6/20/	/23	Comp	leted: 6/20/23	At End of Drillir			rilling:	ng:		30.04		
	er pe								PID		no				
Depth (feet)	nple Tyj i Numbe	Lab	Tests	ecovery inches)	Blow Count	Soil Description			(ppmv) Profile	raphic	USCS ssificatio	Well	Con Gl	struction 27	
	Sar and			M C				Value	0 1000		Cla				
	GP			10		Asphalt Surface								1" PVC Riser	
	0-2			12		Base gravel/sand		0.2			CL				
	GP			12			-0.5	0.2							
	2-4			12		Sand and gravel	iff, with trace 0.2	0.2							
6	GP 4-6			12		Brown SAND: moist, fine to mee	-3- lium grained	0.2							
	GP 6-8			12				0.2							
	GP 8-10			12		-	0.2								
	GP 10.12			12		Brown SAND: moist, fine to coar with trace gravel	urse grained 0.3	0.3							
12	GP			12		-									
<u> </u>	GP			12		-		0.2							
_	GP			12		Brown SAND: moist, fine to mee	lium grained	0.2							
18	GP			12		-		0.2			SD				
_	18-20 GP			12		-		0.2			51				
<u> </u>	20-22 GP			12		Gray SAND: moist, medium to c	oarse grained	0.5							
24	22-24			12				0.3							
	GP 24-26			12		-		0.3							
	GP 26-28			12		-		0.3							
30	GP 28-30	L	AB	12			0.6	0.6						18.01	
	GP 30-32			12		• Gray SAND: saturated, fine to m with trace gravel	edium grained	0.2						Screen	
	GP 32-34			12				0.2						PVC removed after water sampling and	
	GP			6		-	35-	0.1						bentonite	
36	<u> </u>					End of Boring	-35								
Notes	: Locatio	on D													

Phase II Environmental Site Assessment Fort Wayne Community Schools – Transportation South 6006 Ardmore Avenue Fort Wayne, Allen County, Indiana 46809

PHASE II ENVIRONMENTAL SITE ASSESSMENT

APPENDIX B. LABORATORY REPORTS

Fort Wayne Community Schools – Transportation South 6006 Ardmore Avenue Fort Wayne, Allen County, Indiana 46809 SES Phase II ESA Project No.: 2023-0635

Mr. Glen Howard SES Environmental 3807 Transportation Drive Fort Wayne, IN 46818

July 5, 2023

ENVision Project Number: 2023-1278 Client Project Name: 2023-0635

Dear Mr. Howard,

Please find the attached analytical report for the samples received June 22, 2023. All test methods performed were fully compliant with local, state, and federal EPA methods unless otherwise noted. The project was analyzed as requested on the enclosed chain of custody record. Please review the comments section for additional information about your results or Quality Control data.

The reference for the preservation technique utilized by ENVision Laboratories for Volatile Organics in soil may be found on Table A.1 (p. 42) of Method 5035A: Closed-System Purge-and-Trap and Extraction for Volatile Organics in Soil and Waste Samples, July 2002, Draft Revision 1.

Feel free to contact me if you have any questions or comments regarding your analytical report or service.

Thank you for your business. ENVision Laboratories looks forward to working with you on your next project.

Yours Sincerely,

Theryl A. Rum

Cheryl A. Crum

Director of Project Management ENVision Laboratories, Inc.

www.envisionlaboratories.com

Client Name:	SES
Project ID:	2023-0635
Client Project Manager:	GLEN HOWARD
ENVision Project Number:	2023-1278
Analytical Method: Prep Method: Analytical Batch:	EPA 8260 EPA 5035A 062523VS
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 1 28-30 23-12311 soil

Sample Collection Date/Time:	6/20/23	10:15
Sample Received Date/Time:	6/22/23	14:30

Compounds	Sample Results (mg/kg)	Rep. Limit (mg/kg)	Flags
Acetone	< 0.104	0.104	
Acrolein	< 0.00018	0.001	1
Acrylonitrile	< 0.002	0.002	
Benzene	< 0.005	0.005	
Bromobenzene	< 0.005	0.005	
Bromochloromethane	< 0.005	0.005	
Bromodichloromethane	< 0.005	0.005	
Bromoform	< 0.005	0.005	
Bromomethane	< 0.005	0.005	
n-Butanol	< 0.052	0.052	
2-Butanone (MEK)	< 0.010	0.010	
n-Butylbenzene	< 0.005	0.005	
sec-Butylbenzene	< 0.005	0.005	
tert-Butylbenzene	< 0.005	0.005	
Carbon Disulfide	< 0.005	0.005	
Carbon Tetrachloride	< 0.005	0.005	
Chlorobenzene	< 0.005	0.005	
Chloroethane	< 0.005	0.005	
2-Chloroethylvinylether	< 0.052	0.052	
Chloroform	< 0.005	0.005	
Chloromethane	< 0.005	0.005	
2-Chlorotoluene	< 0.005	0.005	
4-Chlorotoluene	< 0.005	0.005	
1,2-Dibromo-3-chloropropane	< 0.0018	0.0018	
Dibromochloromethane	< 0.005	0.005	
1,2-Dibromoethane (EDB)	< 0.00029	0.001	1
Dibromomethane	< 0.005	0.005	
1,2-Dichlorobenzene	< 0.005	0.005	
1,3-Dichlorobenzene	< 0.005	0.005	
1,4-Dichlorobenzene	< 0.005	0.005	
trans-1,4-Dichloro-2-butene	< 0.005	0.005	
Dichlorodifluoromethane	< 0.005	0.005	
1,1-Dichloroethane	< 0.005	0.005	
1,2-Dichloroethane	< 0.005	0.005	
1,1-Dichloroethene	< 0.005	0.005	
	Your Proje	ects. Our Passion.	

8260 continued...

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639 www.envisionlaboratories.com

Compounds	Sample Results (mg/kg)	Rep. Limit (mg/kg)	Flags
cis-1,2-Dichloroethene	< 0.005	0.005	-
trans-1,2-Dichloroethene	< 0.005	0.005	
1,2-Dichloropropane	< 0.005	0.005	
1,3-Dichloropropane	< 0.005	0.005	
2,2-Dichloropropane	< 0.005	0.005	
1,1-Dichloropropene	< 0.005	0.005	
1.3-Dichloropropene	< 0.005	0.005	
Ethylbenzene	< 0.005	0.005	
Ethyl methacrylate	< 0.104	0.104	
Hexachloro-1.3-butadiene	< 0.005	0.005	
n-Hexane	< 0.010	0.010	
2-Hexanone	< 0.010	0.010	
lodomethane	< 0.010	0.010	
Isopropylbenzene (Cumene)	< 0.005	0.005	
n-Isopropyltoluene	< 0.005	0.005	
Methylene chloride	< 0.021	0.021	
4-Methyl-2-pentanone (MIBK)	< 0.021	0.021	
Methyl_tert_butyl_ether	< 0.005	0.005	
n-Pronylbenzene	< 0.005	0.005	
Styrene	< 0.005	0.005	
1 1 1 2-Tetrachloroethane	< 0.005	0.005	
1 1 2 2-Tetrachloroethane	< 0.005	0.005	
Tetrachloroethene	< 0.005	0.005	
Toluene	< 0.005	0.005	
1 2 3-Trichlorobenzene	< 0.005	0.005	
1.2.4-Trichlorobenzene	< 0.005	0.005	
1 1 1-Trichloroethane	< 0.005	0.005	
1 1 2-Trichloroethane	< 0.005	0.005	
Trichloroethene	< 0.005	0.005	
Trichlorofluoromethane	< 0.005	0.005	
1.2.3-Trichloronronane	< 0.005	0.005	
1.2.4 Trimethylbenzene	< 0.005	0.005	
1 3 5-Trimethylbenzene	< 0.005	0.005	
Vinyl acetate	< 0.000	0.000	
Vinyl chloride	< 0.010	0.010	
Yulene M&P	< 0.002	0.002	
Xylene Ortho	< 0.005	0.005	
Xylene, Jotal	< 0.005	0.003	
Dibromofluoromothano (currog	< 0.010	0.010	
1.2 Dichloroethane d4 (surroga	97%		
Toluene_d8 (surrogate)			
A bromofluorobonzono (ourrog	90%		
Analysis Date/Time:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
Analysis Date/ IIIIt.	U-2J-2J/21.47		
	уg		
Percent Solids:	96%		
All results reported on dry weight basis	5.		

Client Name:	SES			
Project ID:	2023-0635			
Client Project Manager:	GLEN HOWARD			
ENVision Project Number:	2023-1278			
Analytical Method: Prep Method: Analytical Batch:	EPA 8270 PAH EPA 3550C 062723PS2			
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 1 28-30 23-12311 soil	Sample Collection Date/Time: Sample Received Date/Time:	6/20/23 6/22/23	10:15 14:30
Compounds Sample Re	sults (mg/kg) Re	p. Limit (mg/kg) Flag	gs	
Acenaphthene	< 0.35	0.35		
Acenaphthylene	< 0.35	0.35		
Anthracene	< 0.35	0.35		
Benzo(a)anthracene	< 0.35	0.35		
Benzo(a)pyrene	< 0.069	0.069		
Benzo(b)fluoranthene	< 0.35	0.35		
Benzo(g,h,i)perylene	< 0.35	0.35		
Benzo(k)fluoranthene	< 0.35	0.35		
Chrysene	< 0.35	0.35		
Dibenzo(a,h)anthracene	< 0.069	0.069		
Fluoranthene	< 0.35	0.35		
Fluorene	< 0.35	0.35		
Indeno(1,2,3-cd)pyrene	< 0.35	0.35		
1-methylnaphthalene	< 0.35	0.35		
2-methylnaphthalene	< 0.35	0.35		
Naphthalene	< 0.069	0.069		
Phenanthrene	< 0.35	0.35		
Pyrene	< 0.35	0.35		
Nitrobenzene-d5 (surrogate)	68%			
2-Fluorobiphenyl (surrogate)	64%			
p-Terphenyl-d14 (surrogate)	87%			
Analysis Date/Time:	6-28-23/12:07			
Analyst Initials:	NR			
Date Extracted:	6/27/23			
Initial Sample Weight (g):	30			
Final Volume (mL):	1			

Percent Solids

96%

All results reported on dry weight basis.

Client Name:	SES					
Project ID:	2023-0635					
Client Project Manager:	GLEN HOWARD					
ENVision Project Number:	2023-1278					
Analytical Method: Prep Method:	EPA 6010B EPA 3050B					
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 1 28-30 23-12311 soil	Sample Collection Date/Time: Sample Received Date/Time:	6/20/23 6/22/23	10:15 14:30		
<u>Compounds</u> Arsenic Cadmium Chromium Lead	<u>Sample Results (mg/kg)</u> < 2 < 2 6.3 3.5	Reporting Limit (mg/kg) 2 2 2 2 2	<u>Flags</u>			
Analysis Date/Time: Analyst Initials: Date Digested:	6-29-23/13:20 gjd 6/28/2023					

96%

Initial Sample Weight:1.0 gFinal Volume:50 mLAnalytical Batch:062923icp

Percent Solids All results reported on dry weight basis.

Client Name:	SES			
Project ID:	2023-0635			
Client Project Manager:	GLEN HOWARD			
ENVision Project Number:	2023-1278			
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 1 28-30 23-12311 soil	Sample Collection Date/Time: Sample Received Date/Time:	6/20/23 6/22/23	10:15 14:30
<u>Analyte</u> Percent Moisture Percent Solids Analysis Date: Analyst Initials	<u>Sample Results</u> 4.0% 96.0% 6/29/23 NR		<u>Flags</u>	<u>Method</u> EPA 1684 EPA 1684

Client Name:	SES
Project ID:	2023-0635
Client Project Manager:	GLEN HOWARD
ENVision Project Number:	2023-1278
Analytical Method: Prep Method: Analytical Batch:	EPA 8260 EPA 5035A 062523VS
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 2 28-30 23-12312 soil

Sample Collection Date/Time:	6/20/23	11:40
Sample Received Date/Time:	6/22/23	14:30

Compounds	Sample Results (mg/kg)	Rep. Limit (mg/kg)	Flags
Acetone	< 0.106	0.106	
Acrolein	< 0.00018	0.001	1
Acrylonitrile	< 0.002	0.002	
Benzene	< 0.005	0.005	
Bromobenzene	< 0.005	0.005	
Bromochloromethane	< 0.005	0.005	
Bromodichloromethane	< 0.005	0.005	
Bromoform	< 0.005	0.005	
Bromomethane	< 0.005	0.005	
n-Butanol	< 0.053	0.053	
2-Butanone (MEK)	< 0.011	0.011	
n-Butylbenzene	< 0.005	0.005	
sec-Butylbenzene	< 0.005	0.005	
tert-Butylbenzene	< 0.005	0.005	
Carbon Disulfide	< 0.005	0.005	
Carbon Tetrachloride	< 0.005	0.005	
Chlorobenzene	< 0.005	0.005	
Chloroethane	< 0.005	0.005	
2-Chloroethylvinylether	< 0.053	0.053	
Chloroform	< 0.005	0.005	
Chloromethane	< 0.005	0.005	
2-Chlorotoluene	< 0.005	0.005	
4-Chlorotoluene	< 0.005	0.005	
1,2-Dibromo-3-chloropropane	< 0.0018	0.0018	
Dibromochloromethane	< 0.005	0.005	
1,2-Dibromoethane (EDB)	< 0.00030	0.001	1
Dibromomethane	< 0.005	0.005	
1,2-Dichlorobenzene	< 0.005	0.005	
1,3-Dichlorobenzene	< 0.005	0.005	
1,4-Dichlorobenzene	< 0.005	0.005	
trans-1,4-Dichloro-2-butene	< 0.005	0.005	
Dichlorodifluoromethane	< 0.005	0.005	
1,1-Dichloroethane	< 0.005	0.005	
1,2-Dichloroethane	< 0.005	0.005	
1,1-Dichloroethene	< 0.005	0.005	
	Your Pro	jects. Our Passion.	

Compounds Sample Results (mg/kg) Rep. Limit (mg/kg) Flags cis-1,2-Dichloroethene < 0.005 0.005 trans-1,2-Dichloroethene < 0.005 0.005 1,2-Dichloropropane < 0.005 0.005 1,3-Dichloropropane < 0.005 0.005 2,2-Dichloropropane < 0.005 0.005 1,1-Dichloropropene < 0.005 0.005 1,3-Dichloropropene < 0.005 0.005 Ethylbenzene < 0.005 0.005 Ethyl methacrylate < 0.106 0.106 Hexachloro-1,3-butadiene < 0.005 0.005 < 0.011 0.011 < 0.011 0.011 < 0.011 lodomethane 0.011 Isopropylbenzene (Cumene) < 0.005 0.005 p-Isopropyltoluene < 0.005 0.005 Methylene chloride < 0.021 0.021 4-Methyl-2-pentanone (MIBK) < 0.011 0.011 Methyl-tert-butyl-ether < 0.005 0.005 n-Propylbenzene < 0.005 0.005 < 0.005 0.005 1,1,1,2-Tetrachloroethane < 0.005 0.005 1,1,2,2-Tetrachloroethane < 0.005 0.005 Tetrachloroethene < 0.005 0.005 < 0.005 0.005 1.2.3-Trichlorobenzene < 0.005 0.005 1,2,4-Trichlorobenzene < 0.005 0.005 1,1,1-Trichloroethane < 0.005 0.005 1.1.2-Trichloroethane < 0.005 0.005 Trichloroethene < 0.005 0.005 Trichlorofluoromethane < 0.005 0.005 1,2,3-Trichloropropane < 0.005 0.005 1,2,4-Trimethylbenzene < 0.005 0.005 1,3,5-Trimethylbenzene < 0.005 0.005 Vinyl acetate < 0.011 0.011 Vinyl chloride < 0.002 0.002 Xylene, M&P < 0.005 0.005 Xylene, Ortho < 0.005 0.005

< 0.011

109%

116%

89%

116%

6-25-23/20:59

tjg

94%

n-Hexane

Styrene

Toluene

Xylene, Total

Dibromofluoromethane (surrogate)

1,2-Dichloroethane-d4 (surrogate)

4-bromofluorobenzene (surrogate)

All results reported on dry weight basis.

Toluene-d8 (surrogate)

Analysis Date/Time:

Analyst Initials

Percent Solids:

2-Hexanone

0.011

Client Name:	SES			
Project ID:	2023-0635			
Client Project Manager:	GLEN HOW	ARD		
ENVision Project Number:	2023-1278			
Analytical Method: Prep Method: Analytical Batch:	EPA 8270 P EPA 3550C 062723PS2	AH		
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 2 28 23-123 soil	3-30 Sample Collect12 Sample Receiv	ion Date/Time: 6/2 ed Date/Time: 6/2	20/23 11:40 22/23 14:30
Compounds Sample Re	sults (mg/kg)	Rep. Limit (mg/kg)	Flags	
Acenaphthene	< 0.35	0.35		
Acenaphthylene	< 0.35	0.35		
Anthracene	< 0.35	0.35		
Benzo(a)anthracene	< 0.35	0.35		
Benzo(a)pyrene	< 0.071	0.071		
Benzo(b)fluoranthene	< 0.35	0.35		
Benzo(g,h,i)perylene	< 0.35	0.35		
Benzo(k)fluoranthene	< 0.35	0.35		
Chrysene	< 0.35	0.35		
Dibenzo(a,h)anthracene	< 0.071	0.071		
Fluoranthene	< 0.35	0.35		
Fluorene	< 0.35	0.35		
Indeno(1,2,3-cd)pyrene	< 0.35	0.35		
1-methylnaphthalene	< 0.35	0.35		
2-methylnaphthalene	< 0.35	0.35		
Naphthalene	< 0.071	0.071		
Phenanthrene	< 0.35	0.35		
Pyrene	< 0.35	0.35		
Nitrobenzene-d5 (surrogate)	80%			
2-Fluorobiphenyi (surrogate)	67%			
p-reprienzi-d 14 (surrogate)	94% 6 00 02/10:2	00		
Analysis Date/ I Me:	0-20-23/12:3	00		
Analysi millals. Date Extracted:	NIN 6/27/23			
Date Extracted:	30			
Final Volume (mL):	30 1			
	I			

94%

Client Name:	SES			
Project ID:	2023-0635			
Client Project Manager:	GLEN HOWARD			
ENVision Project Number:	2023-1278			
Analytical Method: Prep Method:	EPA 6010B EPA 3050B			
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 2 28-30 23-12312 soil	Sample Collection Date/Time: Sample Received Date/Time:	6/20/23 6/22/23	11:40 14:30
<u>Compounds</u> Arsenic Cadmium Chromium Lead	<u>Sample Results (mg/kg)</u> < 2 < 2 6.9 5.2	Reporting Limit (mg/kg) 2 2 2 2 2	<u>Flags</u>	
Analysis Date/Time: Analyst Initials: Date Digested:	6-29-23/13:23 gjd 6/28/2023			

Analytical Batch:	062923icp
Percent Solids	

1.0 g

50 mL

94%

All results reported on dry weight basis.

Initial Sample Weight:

Final Volume:

Client Name:	SES			
Project ID:	2023-0635			
Client Project Manager:	GLEN HOWARD			
ENVision Project Number:	2023-1278			
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 2 28-30 23-12312 soil	Sample Collection Date/Time: Sample Received Date/Time:	6/20/23 6/22/23	11:40 14:30
<u>Analyte</u> Percent Moisture Percent Solids Analysis Date: Analyst Initials	<u>Sample Results</u> 6.0% 94.0% 6/29/23 NR		<u>Flags</u>	<u>Method</u> EPA 1684 EPA 1684

Client Name:	SES
Project ID:	2023-0635
Client Project Manager:	GLEN HOWARD
ENVision Project Number:	2023-1278
Analytical Method: Prep Method: Analytical Batch:	EPA 8260 EPA 5035A 062523VS
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 3 24-25 23-12313 soil

Sample Collection Date/Time:	6/20/23	12:35
Sample Received Date/Time:	6/22/23	14:30

Compounds	Sample Results (mg/kg)	Rep. Limit (mg/kg)	Flags
Acetone	< 0.106	0.106	
Acrolein	< 0.00018	0.001	1
Acrylonitrile	< 0.002	0.002	
Benzene	< 0.005	0.005	
Bromobenzene	< 0.005	0.005	
Bromochloromethane	< 0.005	0.005	
Bromodichloromethane	< 0.005	0.005	
Bromoform	< 0.005	0.005	
Bromomethane	< 0.005	0.005	
n-Butanol	< 0.053	0.053	
2-Butanone (MEK)	< 0.011	0.011	
n-Butylbenzene	< 0.005	0.005	
sec-Butylbenzene	< 0.005	0.005	
tert-Butylbenzene	< 0.005	0.005	
Carbon Disulfide	< 0.005	0.005	
Carbon Tetrachloride	< 0.005	0.005	
Chlorobenzene	< 0.005	0.005	
Chloroethane	< 0.005	0.005	
2-Chloroethylvinylether	< 0.053	0.053	
Chloroform	< 0.005	0.005	
Chloromethane	< 0.005	0.005	
2-Chlorotoluene	< 0.005	0.005	
4-Chlorotoluene	< 0.005	0.005	
1,2-Dibromo-3-chloropropane	< 0.0018	0.0018	
Dibromochloromethane	< 0.005	0.005	
1,2-Dibromoethane (EDB)	< 0.00030	0.001	1
Dibromomethane	< 0.005	0.005	
1,2-Dichlorobenzene	< 0.005	0.005	
1,3-Dichlorobenzene	< 0.005	0.005	
1,4-Dichlorobenzene	< 0.005	0.005	
trans-1,4-Dichloro-2-butene	< 0.005	0.005	
Dichlorodifluoromethane	< 0.005	0.005	
1,1-Dichloroethane	< 0.005	0.005	
1,2-Dichloroethane	< 0.005	0.005	
1,1-Dichloroethene	< 0.005	0.005	
	Your Projec	cts. Our Passion.	Р

8260 continued...

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639 www.envisionlaboratories.com

<u>Compounds</u>	Sample Results (mg/kg)	Rep. Limit (mg/kg)	Flags
cis-1,2-Dichloroethene	< 0.005	0.005	_
trans-1,2-Dichloroethene	< 0.005	0.005	
1,2-Dichloropropane	< 0.005	0.005	
1,3-Dichloropropane	< 0.005	0.005	
2,2-Dichloropropane	< 0.005	0.005	
1,1-Dichloropropene	< 0.005	0.005	
1,3-Dichloropropene	< 0.005	0.005	
Ethvlbenzene	< 0.005	0.005	
Ethyl methacrylate	< 0.106	0.106	
Hexachloro-1.3-butadiene	< 0.005	0.005	
n-Hexane	< 0.011	0.011	
2-Hexanone	< 0.011	0.011	
lodomethane	< 0.011	0.011	
Isopropylbenzene (Cumene)	< 0.005	0.005	
p-lsopropyltoluene	< 0.005	0.005	
Methylene chloride	< 0.021	0.021	
4-Methyl-2-pentanone (MIBK)	< 0.011	0.011	
Methyl-tert-butyl-ether	< 0.005	0.005	
n-Pronylbenzene	< 0.005	0.005	
Styrene	< 0.005	0.005	
1 1 1 2-Tetrachloroethane	< 0.005	0.005	
1 1 2 2-Tetrachloroethane	< 0.005	0.005	
Tetrachloroethene	< 0.005	0.005	
Toluene	< 0.005	0.005	
1 2 3-Trichlorobenzene	< 0.005	0.005	
1.2.4-Trichlorobenzene	< 0.005	0.005	
1 1 1-Trichloroethane	< 0.005	0.005	
1 1 2-Trichloroethane	< 0.005	0.005	
Trichloroethene	< 0.005	0.005	
Trichlorofluoromethane	< 0.005	0.005	
1 2 3-Trichloronronane	< 0.005	0.005	
1 2 4-Trimethylbenzene	< 0.005	0.005	
1 3 5-Trimethylbenzene	< 0.005	0.005	
Vinvl acetate	< 0.000	0.000	
Vinyl chloride	< 0.011	0.002	
Xvlene M&P	< 0.002	0.002	
Xylene Ortho	< 0.005	0.005	
Xylene Total	< 0.003	0.003	
Dibromofluoromethane (surrog	(0.011) (ate) 104%	0.011	
1.2-Dichloroethane-d4 (surrog	(104)		
Toluene-d8 (surrogate)	Q1%		
4-bromofluorobenzene (surrog	ate) 80%		
Analysis Date/Time:	$\begin{array}{ccc} a & & & & & & \\ a & & & & & \\ & & & & &$		
Analysis Date/ IIIIC.	0-20-20/21.10 tia		
	чy		
Percent Solids:	01%		
All results reported on dry weight basis	34 70		
All results reported on dry weight basis	٥.		

Client Name:	SES			
Project ID:	2023-0635			
Client Project Manager:	GLEN HOW	ARD		
ENVision Project Number:	2023-1278			
Analytical Method: Prep Method: Analytical Batch:	EPA 8270 P EPA 3550C 062723PS2	АН		
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 3 24 23-123 soil	-25Sample Collection13Sample Received	Date/Time: 6/20/23 Date/Time: 6/22/23	12:35 14:30
Compounds Sample Re	sults (mg/kg)	Rep. Limit (mg/kg)	Flags	
Acenaphthene	< 0.35	0.35		
Acenaphthylene	< 0.35	0.35		
Anthracene	< 0.35	0.35		
Benzo(a)anthracene	< 0.35	0.35		
Benzo(a)pyrene	< 0.071	0.071		
Benzo(b)fluoranthene	< 0.35	0.35		
Benzo(g,h,i)perylene	< 0.35	0.35		
Benzo(k)fluoranthene	< 0.35	0.35		
Chrysene	< 0.35	0.35		
Dibenzo(a,h)anthracene	< 0.071	0.071		
Fluoranthene	< 0.35	0.35		
Fluorene	< 0.35	0.35		
Indeno(1,2,3-cd)pyrene	< 0.35	0.35		
1-methylnaphthalene	< 0.35	0.35		
2-methylnaphthalene	< 0.35	0.35		
Naphthalene	< 0.071	0.071		
Phenanthrene	< 0.35	0.35		
Pyrene	< 0.35	0.35		
Nitrobenzene-d5 (surrogate)	83%			
2-Fluorobiphenyl (surrogate)	72%			
p-Terphenyl-d14 (surrogate)	91%			
Analysis Date/Time:	6-28-23/12:5	59		
Analyst Initials:	NR			
Date Extracted:	6/27/23			
Initial Sample Weight (g):	30			
Final Volume (mL):	1			

94%

Client Name:	SES			
Project ID:	2023-0635			
Client Project Manager:	GLEN HOWARD			
ENVision Project Number:	2023-1278			
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 3 24-25 23-12313 soil	Sample Collection Date/Time: Sample Received Date/Time:	6/20/23 6/22/23	12:35 14:30
<u>Analyte</u> Percent Moisture Percent Solids Analysis Date: Analyst Initials	<u>Sample Results</u> 6.0% 94.0% 6/29/23 NR		<u>Flags</u>	<u>Method</u> EPA 1684 EPA 1684

Client Name:	SES
Project ID:	2023-0635
Client Project Manager:	GLEN HOWARD
ENVision Project Number:	2023-1278
Analytical Method: Prep Method: Analytical Batch:	EPA 8260 EPA 5035A 062523VS
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 4 28-30 23-12314 soil

Sample Collection Date/Time:	6/20/23	13:28
Sample Received Date/Time:	6/22/23	14:30

Compounds	Sample Results (mg/kg)	Rep. Limit (mg/kg)	Flags
Acetone	< 0.105	0.105	
Acrolein	< 0.00018	0.001	1
Acrylonitrile	< 0.002	0.002	
Benzene	< 0.005	0.005	
Bromobenzene	< 0.005	0.005	
Bromochloromethane	< 0.005	0.005	
Bromodichloromethane	< 0.005	0.005	
Bromoform	< 0.005	0.005	
Bromomethane	< 0.005	0.005	
n-Butanol	< 0.053	0.053	
2-Butanone (MEK)	< 0.011	0.011	
n-Butylbenzene	< 0.005	0.005	
sec-Butylbenzene	< 0.005	0.005	
tert-Butylbenzene	< 0.005	0.005	
Carbon Disulfide	< 0.005	0.005	
Carbon Tetrachloride	< 0.005	0.005	
Chlorobenzene	< 0.005	0.005	
Chloroethane	< 0.005	0.005	
2-Chloroethylvinylether	< 0.053	0.053	
Chloroform	< 0.005	0.005	
Chloromethane	< 0.005	0.005	
2-Chlorotoluene	< 0.005	0.005	
4-Chlorotoluene	< 0.005	0.005	
1,2-Dibromo-3-chloropropane	< 0.0018	0.0018	
Dibromochloromethane	< 0.005	0.005	
1,2-Dibromoethane (EDB)	< 0.00029	0.001	1
Dibromomethane	< 0.005	0.005	
1,2-Dichlorobenzene	< 0.005	0.005	
1,3-Dichlorobenzene	< 0.005	0.005	
1,4-Dichlorobenzene	< 0.005	0.005	
trans-1,4-Dichloro-2-butene	< 0.005	0.005	
Dichlorodifluoromethane	< 0.005	0.005	
1,1-Dichloroethane	< 0.005	0.005	
1,2-Dichloroethane	< 0.005	0.005	
1,1-Dichloroethene	< 0.005	0.005	
	Your Proje	cts. Our Passion.	P

8260 continued...

Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639 www.envisionlaboratories.com

Compounds	Sample Results (mg/kg)	Rep. Limit (mg/kg)	Flags
cis-1,2-Dichloroethene	< 0.005	0.005	
trans-1,2-Dichloroethene	< 0.005	0.005	
1,2-Dichloropropane	< 0.005	0.005	
1,3-Dichloropropane	< 0.005	0.005	
2,2-Dichloropropane	< 0.005	0.005	
1,1-Dichloropropene	< 0.005	0.005	
1,3-Dichloropropene	< 0.005	0.005	
Ethylbenzene	< 0.005	0.005	
Ethyl methacrylate	< 0.105	0.105	
Hexachloro-1,3-butadiene	< 0.005	0.005	
n-Hexane	< 0.011	0.011	
2-Hexanone	< 0.011	0.011	
lodomethane	< 0.011	0.011	
Isopropylbenzene (Cumene)	< 0.005	0.005	
p-Isopropyltoluene	< 0.005	0.005	
Methylene chloride	< 0.021	0.021	
4-Methyl-2-pentanone (MIBK)	< 0.011	0.011	
Methyl-tert-butyl-ether	< 0.005	0.005	
n-Propylbenzene	< 0.005	0.005	
Styrene	< 0.005	0.005	
1.1.1.2-Tetrachloroethane	< 0.005	0.005	
1.1.2.2-Tetrachloroethane	< 0.005	0.005	
Tetrachloroethene	< 0.005	0.005	
Toluene	< 0.005	0.005	
1.2.3-Trichlorobenzene	< 0.005	0.005	
1.2.4-Trichlorobenzene	< 0.005	0.005	
1,1,1-Trichloroethane	< 0.005	0.005	
1.1.2-Trichloroethane	< 0.005	0.005	
Trichloroethene	< 0.005	0.005	
Trichlorofluoromethane	< 0.005	0.005	
1,2,3-Trichloropropane	< 0.005	0.005	
1,2,4-Trimethylbenzene	< 0.005	0.005	
1,3,5-Trimethylbenzene	< 0.005	0.005	
Vinyl acetate	< 0.011	0.011	
Vinyl chloride	< 0.002	0.002	
Xylene, M&P	< 0.005	0.005	
Xylene, Ortho	< 0.005	0.005	
Xylene, Total	< 0.011	0.011	
Dibromofluoromethane (surrog	ate) 116%		
1,2-Dichloroethane-d4 (surroga	ate) 102%		
Toluene-d8 (surrogate)	ý 90%		
4-bromofluorobenzene (surroa	ate) 85%		
Analysis Date/Time:	6-25-23/21:30		
Analyst Initials	tig		
2			
Percent Solids:	95%		
All results reported on dry weight basis	5.		

Client Name:	SES				
Project ID:	2023-0635				
Client Project Manager:	GLEN HOW	ARD			
ENVision Project Number:	2023-1278				
Analytical Method: Prep Method: Analytical Batch:	EPA 8270 PA EPA 3550C 062723PS2	АН			
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 4 28 23-123 ⁻⁷ soil	-30 Sample Co 14 Sample Ro	ollection Date/Time: eceived Date/Time:	6/20/23 6/22/23	13:28 14:30
Compounds Sample Re	sults (mg/kg)	Rep. Limit (mg/k	kg) Flag	<u>ls</u>	
Acenaphthene	< 0.35	0.35		_	
Acenaphthylene	< 0.35	0.35			
Anthracene	< 0.35	0.35			
Benzo(a)anthracene	< 0.35	0.35			
Benzo(a)pyrene	< 0.070	0.070			
Benzo(b)fluoranthene	< 0.35	0.35			
Benzo(g,h,i)perylene	< 0.35	0.35			
Benzo(k)fluoranthene	< 0.35	0.35			
Chrysene	< 0.35	0.35			
Dibenzo(a,h)anthracene	< 0.070	0.070			
Fluoranthene	< 0.35	0.35			
Fluorene	< 0.35	0.35			
Indeno(1,2,3-cd)pyrene	< 0.35	0.35			
1-methylnaphthalene	< 0.35	0.35			
2-methylnaphthalene	< 0.35	0.35			
Naphthalene	< 0.070	0.070			
Phenanthrene	< 0.35	0.35			
Pyrene	< 0.35	0.35			
Nitrobenzene-d5 (surrogate)	/1%				
2-Fluorobiphenyl (surrogate)	68%				
p-Terphenyl-d14 (surrogate)	91%				
Analysis Date/ I ime:	6-28-23/13:2	3			
Analyst Initials:					
	6/27/23				
	30				
Final volume (mL):	Т				

95%

Client Name:	SES			
Project ID:	2023-0635			
Client Project Manager:	GLEN HOWARD			
ENVision Project Number:	2023-1278			
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 4 28-30 23-12314 soil	Sample Collection Date/Time: Sample Received Date/Time:	6/20/23 6/22/23	13:28 14:30
<u>Analyte</u> Percent Moisture Percent Solids Analysis Date: Analyst Initials	<u>Sample Results</u> 5.0% 95.0% 6/29/23 NR		<u>Flags</u>	<u>Method</u> EPA 1684 EPA 1684

Client Name:	SES
Project ID:	2023-0635
Client Project Manager:	GLEN HOWARD
ENVision Project Number:	2023-1278
Analytical Method: Prep Method: Analytical Batch:	EPA 8260 EPA 5035A 062523VS
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 5 28-30 23-12315 soil

Sample Collection Date/Time:	6/20/23	14:28
Sample Received Date/Time:	6/22/23	14:30

<u>Compounds</u>	Sample Results (mg/kg)	Rep. Limit (mg/kg)	Flags
Acetone	< 0.103	0.103	
Acrolein	< 0.00018	0.001	1
Acrylonitrile	< 0.002	0.002	
Benzene	< 0.005	0.005	
Bromobenzene	< 0.005	0.005	
Bromochloromethane	< 0.005	0.005	
Bromodichloromethane	< 0.005	0.005	
Bromoform	< 0.005	0.005	
Bromomethane	< 0.005	0.005	
n-Butanol	< 0.052	0.052	
2-Butanone (MEK)	< 0.010	0.010	
n-Butylbenzene	< 0.005	0.005	
sec-Butylbenzene	< 0.005	0.005	
tert-Butylbenzene	< 0.005	0.005	
Carbon Disulfide	< 0.005	0.005	
Carbon Tetrachloride	< 0.005	0.005	
Chlorobenzene	< 0.005	0.005	
Chloroethane	< 0.005	0.005	
2-Chloroethylvinylether	< 0.052	0.052	
Chloroform	< 0.005	0.005	
Chloromethane	< 0.005	0.005	
2-Chlorotoluene	< 0.005	0.005	
4-Chlorotoluene	< 0.005	0.005	
1,2-Dibromo-3-chloropropane	< 0.0018	0.0018	
Dibromochloromethane	< 0.005	0.005	
1,2-Dibromoethane (EDB)	< 0.00029	0.001	1
Dibromomethane	< 0.005	0.005	
1,2-Dichlorobenzene	< 0.005	0.005	
1,3-Dichlorobenzene	< 0.005	0.005	
1,4-Dichlorobenzene	< 0.005	0.005	
trans-1,4-Dichloro-2-butene	< 0.005	0.005	
Dichlorodifluoromethane	< 0.005	0.005	
1,1-Dichloroethane	< 0.005	0.005	
1,2-Dichloroethane	< 0.005	0.005	
1,1-Dichloroethene	< 0.005	0.005	
	Your Projec	ts. Our Passion.	Page 20 of 110

1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639 www.envisionlaboratories.com

8260 continued			
Compounds	Sample Results (mg/kg)	Rep. Limit (mg/kg)	Flags
cis-1,2-Dichloroethene	< 0.005	0.005	
trans-1,2-Dichloroethene	< 0.005	0.005	
1,2-Dichloropropane	< 0.005	0.005	
1,3-Dichloropropane	< 0.005	0.005	
2,2-Dichloropropane	< 0.005	0.005	
1,1-Dichloropropene	< 0.005	0.005	
1,3-Dichloropropene	< 0.005	0.005	
Ethylbenzene	< 0.005	0.005	
Ethyl methacrylate	< 0.103	0.103	
Hexachloro-1,3-butadiene	< 0.005	0.005	
n-Hexane	< 0.010	0.010	
2-Hexanone	< 0.010	0.010	
lodomethane	< 0.010	0.010	
Isopropylbenzene (Cumene)	< 0.005	0.005	
p-Isopropyltoluene	< 0.005	0.005	
Methylene chloride	< 0.021	0.021	
4-Methyl-2-pentanone (MIBK)	< 0.010	0.010	
Methyl-tert-butyl-ether	< 0.005	0.005	
n-Propylbenzene	< 0.005	0.005	
Styrene	< 0.005	0.005	
1,1,1,2-Tetrachloroethane	< 0.005	0.005	
1,1,2,2-Tetrachloroethane	< 0.005	0.005	
Tetrachloroethene	< 0.005	0.005	
Toluene	< 0.005	0.005	
1,2,3-Trichlorobenzene	< 0.005	0.005	
1,2,4-Trichlorobenzene	< 0.005	0.005	
1,1,1-Trichloroethane	< 0.005	0.005	
1,1,2-Trichloroethane	< 0.005	0.005	
Trichloroethene	< 0.005	0.005	
Trichlorofluoromethane	< 0.005	0.005	
1,2,3-Trichloropropane	< 0.005	0.005	
1,2,4-Trimethylbenzene	< 0.005	0.005	
1,3,5-Trimethylbenzene	< 0.005	0.005	
Vinyl acetate	< 0.010	0.010	
Vinyl chloride	< 0.002	0.002	
Xylene, M&P	< 0.005	0.005	
Xylene, 0rtho	< 0.005	0.005	
Xylene, Total	< 0.010	0.010	
Dibromofluoromethane (surrog	ate) 108%		
1,2-Dichloroethane-d4 (surroga	ate) 115%		
Toluene-d8 (surrogate)	87%		
4-bromofluorobenzene (surroga	ate) 108%		
Analysis Date/Time:	6-25-23/22:03		
Analyst Initials	tjg		
Percent Solids:	97%		
All results reported on dry weight basis	S.		

Client Name:	SES					
Project ID:	2023-0635					
Client Project Manager:	GLEN HOW	ARD				
ENVision Project Number:	2023-1278					
Analytical Method: Prep Method: Analytical Batch:	EPA 8270 P EPA 3550C 062723PS2	AH				
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 5 28 23-123 soil	8-30 15	Sample Collee Sample Recei	ction Date/Time: ved Date/Time:	6/20/23 6/22/23	14:28 14:30
Compounds Sample Re	sults (ma/ka)	Rep.	Limit (ma/ka)	Fla	as	
Acenaphthene	< 0.34		0.34		<u></u>	
Acenaphthylene	< 0.34		0.34			
Anthracene	< 0.34		0.34			
Benzo(a)anthracene	< 0.34		0.34			
Benzo(a)pyrene	< 0.069		0.069			
Benzo(b)fluoranthene	< 0.34		0.34			
Benzo(g,h,i)perylene	< 0.34		0.34			
Benzo(k)fluoranthene	< 0.34		0.34			
Chrysene	< 0.34		0.34			
Dibenzo(a,h)anthracene	< 0.069		0.069			
Fluoranthene	< 0.34		0.34			
Fluorene	< 0.34		0.34			
Indeno(1,2,3-cd)pyrene	< 0.34		0.34			
1-methylnaphthalene	< 0.34		0.34			
2-methylnaphthalene	< 0.34		0.34			
Naphthalene	< 0.069		0.069			
Phenanthrene	< 0.34		0.34			
Pyrene	< 0.34		0.34			
Nitrobenzene-d5 (surrogate)	91%					
2-Fluorobiphenyl (surrogate)	84%					
p-Terphenyl-d14 (surrogate)	112%					
Analysis Date/Time:	6-28-23/13:5	51				
Analyst Initials:	NR					
Date Extracted:	6/27/23					
Initial Sample Weight (g):	30					
Final Volume (mL):	1					
Percent Solids	97%					

Client Name:	SES			
Project ID:	2023-0635			
Client Project Manager:	GLEN HOWARD			
ENVision Project Number:	2023-1278			
Analytical Method: Prep Method:	EPA 6010B EPA 3050B			
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 5 28-30 23-12315 soil	Sample Collection Date/Time: Sample Received Date/Time:	6/20/23 6/22/23	14:28 14:30
<u>Compounds</u> Arsenic Cadmium Chromium	<u>Sample Results (mg/kg)</u> < 2 < 2 5.7	Reporting Limit (mg/kg) 2 2 2	<u>Flags</u>	
Lead	4.4	2		
Analysis Date/Time: Analyst Initials: Date Digested: Initial Sample Weight: Final Volume:	6-29-23/13:25 gjd 6/28/2023 1.0 g 50 mL			

Percent Solids All results reported on dry weight basis.

062923icp

97%

Analytical Batch:

Client Name:	SES			
Project ID:	2023-0635			
Client Project Manager:	GLEN HOWARD			
ENVision Project Number:	2023-1278			
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 5 28-30 23-12315 soil	Sample Collection Date/Time: Sample Received Date/Time:	6/20/23 6/22/23	14:28 14:30
<u>Analyte</u> Percent Moisture Percent Solids Analysis Date: Analyst Initials	<u>Sample Results</u> 3.0% 97.0% 6/29/23 NR		<u>Flags</u>	<u>Method</u> EPA 1684 EPA 1684

Client Name:	SES
Project ID:	2023-0635
Client Project Manager:	GLEN HOWARD
ENVision Project Number:	2023-1278
Analytical Method: Prep Method: Analytical Batch:	EPA 8260 EPA 5035A 062523VS
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 6 28-30 23-12316 soil

Sample Collection Date/Time:	6/21/23	9:32
Sample Received Date/Time:	6/22/23	14:30

Compounds	Sample Results (mg/kg)	Rep. Limit (mg/kg)	Flags
Acetone	< 0.104	0.104	
Acrolein	< 0.00018	0.001	1
Acrylonitrile	< 0.002	0.002	
Benzene	< 0.005	0.005	
Bromobenzene	< 0.005	0.005	
Bromochloromethane	< 0.005	0.005	
Bromodichloromethane	< 0.005	0.005	
Bromoform	< 0.005	0.005	
Bromomethane	< 0.005	0.005	
n-Butanol	< 0.052	0.052	
2-Butanone (MEK)	< 0.010	0.010	
n-Butylbenzene	< 0.005	0.005	
sec-Butylbenzene	< 0.005	0.005	
tert-Butylbenzene	< 0.005	0.005	
Carbon Disulfide	< 0.005	0.005	
Carbon Tetrachloride	< 0.005	0.005	
Chlorobenzene	< 0.005	0.005	
Chloroethane	< 0.005	0.005	
2-Chloroethylvinylether	< 0.052	0.052	
Chloroform	< 0.005	0.005	
Chloromethane	< 0.005	0.005	
2-Chlorotoluene	< 0.005	0.005	
4-Chlorotoluene	< 0.005	0.005	
1,2-Dibromo-3-chloropropane	< 0.0018	0.0018	
Dibromochloromethane	< 0.005	0.005	
1,2-Dibromoethane (EDB)	< 0.00029	0.001	1
Dibromomethane	< 0.005	0.005	
1,2-Dichlorobenzene	< 0.005	0.005	
1,3-Dichlorobenzene	< 0.005	0.005	
1,4-Dichlorobenzene	< 0.005	0.005	
trans-1,4-Dichloro-2-butene	< 0.005	0.005	
Dichlorodifluoromethane	< 0.005	0.005	
1,1-Dichloroethane	< 0.005	0.005	
1,2-Dichloroethane	< 0.005	0.005	
1,1-Dichloroethene	< 0.005	0.005	
	Your Proje	ects. Our Passion.	P

1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639 www.envisionlaboratories.com

8260 continued			
<u>Compounds</u>	Sample Results (mg/kg)	Rep. Limit (mg/kg)	Flags
cis-1,2-Dichloroethene	< 0.005	0.005	
trans-1,2-Dichloroethene	< 0.005	0.005	
1,2-Dichloropropane	< 0.005	0.005	
1,3-Dichloropropane	< 0.005	0.005	
2,2-Dichloropropane	< 0.005	0.005	
1,1-Dichloropropene	< 0.005	0.005	
1,3-Dichloropropene	< 0.005	0.005	
Ethylbenzene	< 0.005	0.005	
Ethyl methacrylate	< 0.104	0.104	
Hexachloro-1,3-butadiene	< 0.005	0.005	
n-Hexane	< 0.010	0.010	
2-Hexanone	< 0.010	0.010	
lodomethane	< 0.010	0.010	
Isopropylbenzene (Cumene)	< 0.005	0.005	
p-Isopropyltoluene	< 0.005	0.005	
Methylene chloride	< 0.021	0.021	
4-Methyl-2-pentanone (MIBK)	< 0.010	0.010	
Methyl-tert-butyl-ether	< 0.005	0.005	
n-Propylbenzene	< 0.005	0.005	
Styrene	< 0.005	0.005	
1.1.2-Tetrachloroethane	< 0.005	0.005	
1.1.2.2-Tetrachloroethane	< 0.005	0.005	
Tetrachloroethene	< 0.005	0.005	
Toluene	< 0.005	0.005	
1.2.3-Trichlorobenzene	< 0.005	0.005	
1.2.4-Trichlorobenzene	< 0.005	0.005	
1.1.1-Trichloroethane	< 0.005	0.005	
1.1.2-Trichloroethane	< 0.005	0.005	
Trichloroethene	< 0.005	0.005	
Trichlorofluoromethane	< 0.005	0.005	
1.2.3-Trichloropropane	< 0.005	0.005	
1.2.4-Trimethylbenzene	< 0.005	0.005	
1,3,5-Trimethylbenzene	< 0.005	0.005	
Vinyl acetate	< 0.010	0.010	
Vinyl chloride	< 0.002	0.002	
Xvlene. M&P	< 0.005	0.005	
Xvlene. Ortho	< 0.005	0.005	
Xvlene. Total	< 0.010	0.010	
Dibromofluoromethane (surrog	ate) 110%		
1.2-Dichloroethane-d4 (surroga	ate) 115%		
Toluene-d8 (surrogate)	94%		
4-bromofluorobenzene (surrog	ate) 91%		
Analysis Date/Time:	, 6-25-23/22:18		
Analyst Initials	tia		
2			
Percent Solids:	96%		
All results reported on dry weight basis	S.		

Client Name:	SES				
Project ID:	2023-0635				
Client Project Manager:	GLEN HOW	ARD			
ENVision Project Number:	2023-1278				
Analytical Method: Prep Method: Analytical Batch:	EPA 8270 PA EPA 3550C 062723PS2	АН			
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 6 28 23-123 soil	-30 Sample Collect 16 Sample Recei	ction Date/Time: ved Date/Time:	6/21/23 6/22/23	9:32 14:30
Compounds Sample Re	sults (mg/kg)	Rep. Limit (mg/kg)	Flac	IS	
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1-methylnaphthalene 2-methylnaphthalene 2-methylnaphthalene Naphthalene Phenanthrene Pyrene Nitrobenzene-d5 (surrogate) 2-Fluorobiphenyl (surrogate) p-Terphenyl-d14 (surrogate) p-Terphenyl-d14 (surrogate) Analysis Date/Time: Analysis Date/Time: Initial Sample Weight (g): Final Volume (mL):	< 0.35 < 0.25 < 0.35 < 0.25 < 0.35 < 0.25 < 0.35 < 0.25 < 0.35 < 0.25 < 0.35 < 0.25 < 0.35 < 0.35 < 0.35 < 0.25 < 0.35 < 0.22 < 0.35 < 0.35 < 0.35 < 0.22 < 0.35 < 0.22 < 0.35 < 0.23 < 0.25 < 0.23 < 0.25 <	0.35 0.35 0.35 0.35 0.069 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35			
Dereent Colida	06%				

96%

Client Name:	SES			
Project ID:	2023-0635			
Client Project Manager:	GLEN HOWARD			
ENVision Project Number:	2023-1278			
Analytical Method: Prep Method:	EPA 6010B EPA 3050B			
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 6 28-30 23-12316 soil	Sample Collection Date/Time: Sample Received Date/Time:	6/21/23 6/22/23	9:32 14:30
<u>Compounds</u> Arsenic Cadmium Chromium Lead	<u>Sample Results (mg/kg)</u> < 2 < 2 5.2 5.2 5.2	Reporting Limit (mg/kg) 2 2 2 2 2	<u>Flags</u>	
Analysis Date/Time: Analyst Initials: Date Digested: Initial Sample Weight:	6-29-23/13:27 gjd 6/28/2023 1.0 g			

Percent Solids All results reported on dry weight basis.

50 mL

062923icp

96%

Final Volume:

Analytical Batch:

Client Name:	SES			
Project ID:	2023-0635			
Client Project Manager:	GLEN HOWARD			
ENVision Project Number:	2023-1278			
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 6 28-30 23-12316 soil	Sample Collection Date/Time: Sample Received Date/Time:	6/21/23 6/22/23	9:32 14:30
<u>Analyte</u> Percent Moisture Percent Solids Analysis Date: Analyst Initials	<u>Sample Results</u> 4.0% 96.0% 6/29/23 NR		<u>Flags</u>	<u>Method</u> EPA 1684 EPA 1684

Client Name:	SES
Project ID:	2023-0635
Client Project Manager:	GLEN HOWARD
ENVision Project Number:	2023-1278
Analytical Method: Prep Method: Analytical Batch:	EPA 8260 EPA 5035A 062523VS
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 7 28-30 23-12317 soil

Sample Collection Date/Time:	6/21/23	10:13
Sample Received Date/Time:	6/22/23	14:30

Compounds	Sample Results (mg/kg)	Rep. Limit (mg/kg)	Flags
Acetone	< 0.106	0.106	
Acrolein	< 0.00018	0.001	1
Acrylonitrile	< 0.002	0.002	
Benzene	< 0.005	0.005	
Bromobenzene	< 0.005	0.005	
Bromochloromethane	< 0.005	0.005	
Bromodichloromethane	< 0.005	0.005	
Bromoform	< 0.005	0.005	
Bromomethane	< 0.005	0.005	
n-Butanol	< 0.053	0.053	
2-Butanone (MEK)	< 0.011	0.011	
n-Butylbenzene	< 0.005	0.005	
sec-Butylbenzene	< 0.005	0.005	
tert-Butylbenzene	< 0.005	0.005	
Carbon Disulfide	< 0.005	0.005	
Carbon Tetrachloride	< 0.005	0.005	
Chlorobenzene	< 0.005	0.005	
Chloroethane	< 0.005	0.005	
2-Chloroethylvinylether	< 0.053	0.053	
Chloroform	< 0.005	0.005	
Chloromethane	< 0.005	0.005	
2-Chlorotoluene	< 0.005	0.005	
4-Chlorotoluene	< 0.005	0.005	
1,2-Dibromo-3-chloropropane	< 0.0018	0.0018	
Dibromochloromethane	< 0.005	0.005	
1,2-Dibromoethane (EDB)	< 0.00030	0.001	1
Dibromomethane	< 0.005	0.005	
1,2-Dichlorobenzene	< 0.005	0.005	
1,3-Dichlorobenzene	< 0.005	0.005	
1,4-Dichlorobenzene	< 0.005	0.005	
trans-1,4-Dichloro-2-butene	< 0.005	0.005	
Dichlorodifluoromethane	< 0.005	0.005	
1,1-Dichloroethane	< 0.005	0.005	
1,2-Dichloroethane	< 0.005	0.005	
1,1-Dichloroethene	< 0.005	0.005	
	Your Projec	ts. Our Passion.	P

8260 continued			
Compounds	Sample Results (mg/kg)	Rep. Limit (mg/kg)	Flags
cis-1,2-Dichloroethene	< 0.005	0.005	
trans-1,2-Dichloroethene	< 0.005	0.005	
1,2-Dichloropropane	< 0.005	0.005	
1,3-Dichloropropane	< 0.005	0.005	
2,2-Dichloropropane	< 0.005	0.005	
1,1-Dichloropropene	< 0.005	0.005	
1,3-Dichloropropene	< 0.005	0.005	
Ethylbenzene	< 0.005	0.005	
Ethyl methacrylate	< 0.106	0.106	
Hexachloro-1,3-butadiene	< 0.005	0.005	
n-Hexane	< 0.011	0.011	
2-Hexanone	< 0.011	0.011	
lodomethane	< 0.011	0.011	
Isopropylbenzene (Cumene)	< 0.005	0.005	
p-Isopropyltoluene	< 0.005	0.005	
Methylene chloride	< 0.021	0.021	
4-Methyl-2-pentanone (MIBK)	< 0.011	0.011	
Methyl-tert-butyl-ether	< 0.005	0.005	
n-Propylbenzene	< 0.005	0.005	
Styrene	< 0.005	0.005	
1,1,1,2-Tetrachloroethane	< 0.005	0.005	
1,1,2,2-Tetrachloroethane	< 0.005	0.005	
Tetrachloroethene	< 0.005	0.005	
Toluene	< 0.005	0.005	
1,2,3-Trichlorobenzene	< 0.005	0.005	
1,2,4-Trichlorobenzene	< 0.005	0.005	
1,1,1-Trichloroethane	< 0.005	0.005	
1,1,2-Trichloroethane	< 0.005	0.005	
Trichloroethene	< 0.005	0.005	
Trichlorofluoromethane	< 0.005	0.005	
1,2,3-Trichloropropane	< 0.005	0.005	
1,2,4-Trimethylbenzene	< 0.005	0.005	
1,3,5-Trimethylbenzene	< 0.005	0.005	
Vinyl acetate	< 0.011	0.011	
Vinyl chloride	< 0.002	0.002	
Xylene, M&P	< 0.005	0.005	
Xylene, 0rtho	< 0.005	0.005	
Xylene, Total	< 0.011	0.011	
Dibromofluoromethane (surrog	ate) 106%		
1,2-Dichloroethane-d4 (surroga	ate) 112%		
Toluene-d8 (surrogate)	87%		
4-bromofluorobenzene (surroga	ate) 94%		
Analysis Date/Time:	6-25-23/22:34		
Analyst Initials	tjg		
Percent Solids:	94%		
All results reported on dry weight basis	S.		

SES			
2023-0635			
GLEN HOW	ARD		
2023-1278			
EPA 8270 P EPA 3550C 062723PS2	AH		
GP 7 28 23-123 soil	 30 Sample Collection 17 Sample Received 	n Date/Time: 6/21/23 I Date/Time: 6/22/23	10:13 14:30
sults (mg/kg)	Rep. Limit (mg/kg)	Flags	
< 0.35	0.35		
< 0.35	0.35		
< 0.35	0.35		
< 0.35	0.35		
< 0.071	0.071		
< 0.35	0.35		
< 0.35	0.35		
< 0.35	0.35		
< 0.35	0.35		
< 0.071	0.071		
< 0.35	0.35		
< 0.35	0.35		
< 0.35	0.35		
< 0.35	0.35		
< 0.35	0.35		
< 0.071	0.071		
< 0.35	0.35		
< 0.35	0.35		
78% 760/			
10%			
6 29 22/14-/	12		
0-20-23/14.4 NR	tu i		
6/27/22			
30			
1			
I			
	SES 2023-0635 GLEN HOW 2023-1278 EPA 8270 P EPA 3550C 062723PS2 GP 7 28 23-123 soil esults (mg/kg) < 0.35 < 0.35	SES 2023-0635 GLEN HOWARD 2023-1278 EPA 8270 PAH EPA 3550C 062723PS2 GP 7 28-30 23-12317 soil Sample Collectio Sample Received soil Sample Received 5 0.35	SES 2023-0635 GLEN HOWARD 2023-1278 EPA 8270 PAH EPA 3550C 062723PS2 GP 7 28-30 23-12317 Sample Collection Date/Time: 6/21/23 301 Subtle (mg/kg) Rep. Limit (mg/kg) Flags < 0.35 < 0.35

94%

Client Name:	SES			
Project ID:	2023-0635			
Client Project Manager:	GLEN HOWARD			
ENVision Project Number:	2023-1278			
Analytical Method: Prep Method:	EPA 6010B EPA 3050B			
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 7 28-30 23-12317 soil	Sample Collection Date/Time: Sample Received Date/Time:	6/21/23 6/22/23	10:13 14:30
<u>Compounds</u> Arsenic Cadmium Chromium Lead	<u>Sample Results (mg/kg)</u> < 2 < 2 5.9 5.3	Reporting Limit (mg/kg) 2 2 2 2 2	<u>Flags</u>	
Analysis Date/Time: Analyst Initials: Date Digested: Initial Sample Weight:	6-29-23/13:30 gjd 6/28/2023 1.0 g			

Analytical Batch: 062923icp Percent Solids

94%

50 mL

All results reported on dry weight basis.

Final Volume:

Client Name:	SES			
Project ID:	2023-0635			
Client Project Manager:	GLEN HOWARD			
ENVision Project Number:	2023-1278			
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 7 28-30 23-12317 soil	Sample Collection Date/Time: Sample Received Date/Time:	6/21/23 6/22/23	10:13 14:30
<u>Analyte</u> Percent Moisture Percent Solids Analysis Date: Analyst Initials	<u>Sample Results</u> 6.0% 94.0% 6/29/23 NR		<u>Flags</u>	<u>Method</u> EPA 1684 EPA 1684

Client Name:	SES	
Project ID:	2023-0635	
Client Project Manager:	GLEN HOWARD	
ENVision Project Number:	2023-1278	
Analytical Method: Prep Method: Analytical Batch:	EPA 8260 EPA 5030B 062623BVW	
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 1 23-12318 water	Sample Col Sample Rec
<u>Compounds</u>	Sample Results (ug/L)	<u>Report</u>
Acetone	< 100	
Acrolein	< 1	
Acrylonitrile	< 0.45	
Benzene	< 5	
Bromobenzene	< 5	
Bromochloromethane	< 5	

Sample Collection Date/Time:	6/21/23	13:20
Sample Received Date/Time:	6/22/23	14:30

<u>Compounds</u>	Sample Results (ug/L)	Reporting Limit (ug/L)	<u>Flags</u>
Acetone	< 100	100	
Acrolein	< 1	1	
Acrylonitrile	< 0.45	1	1
Benzene	< 5	5	
Bromobenzene	< 5	5	
Bromochloromethane	< 5	5	
Bromodichloromethane	< 5	5	
Bromoform	< 5	5	
Bromomethane	< 5	5	
n-Butanol	< 50	50	
2-Butanone (MEK)	< 10	10	
n-Butylbenzene	< 5	5	
sec-Butylbenzene	< 5	5	
tert-Butylbenzene	< 5	5	
Carbon Disulfide	< 5	5	
Carbon Tetrachloride	< 5	5	
Chlorobenzene	< 5	5	
Chloroethane	< 5	5	
2-Chloroethylvinylether	< 50	50	
Chloroform	< 5	5	
Chloromethane	< 5	5	
2-Chlorotoluene	< 5	5	
4-Chlorotoluene	< 5	5	
1,2-Dibromo-3-chloropropane	< 1	1	
Dibromochloromethane	< 5	5	
1,2-Dibromoethane (EDB)	< 1	1	
Dibromomethane	< 5	5	
1,2-Dichlorobenzene	< 5	5	
1,3-Dichlorobenzene	< 5	5	
1,4-Dichlorobenzene	< 5	5	
trans-1,4-Dichloro-2-butene	< 1	1	
Dichlorodifluoromethane	< 5	5	

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639 www.envisionlaboratories.com

8260 continued			
<u>Compounds</u>	Sample Results (ug/L)	<u>Reporting Limit (ug/L)</u>	<u>Flags</u>
1,1-Dichloroethane	< 5	5	
1,2-Dichloroethane	< 5	5	
1,1-Dichloroethene	< 5	5	
cis-1,2-Dichloroethene	< 5	5	
trans-1,2-Dichloroethene	< 5	5	
1,2-Dichloropropane	< 5	5	
1.3-Dichloropropane	< 5	5	
2.2-Dichloropropane	< 5	5	
1.1-Dichloropropene	< 5	5	
1.3-Dichloropropene	< 4.1	4.1	
Ethvlbenzene	< 5	5	
Ethyl methacrylate	< 100	100	
Hexachloro-1 3-butadiene	< 2.6	2.6	
n-Hexane	< 10	10	
2-Hexanone	< 10	10	
Iodomethane	< 10	10	
Isopropylbenzene (Cumene)	< 5	5	
n-lsopropylsenzene (eumene)	< 5	5	
Methylene chloride	< 5	5	
4-Methyl-2-pentanone (MIBK)	< 10	10	
Methyl_tert_butyl_ether	< 5	5	
n-Propylbenzene	< 5	5	
Styrene	< 5	5	
1 1 1 2-Tetrachloroethane	< 5	5	
1 1 2 2 Tetrachloroethane		1	1
Tetrachloroethene	< 0.00	1	I
Toluene	< 5	5	
1 2 3-Trichlorobenzene	< 5	5	
1,2,4 Trichlorobenzene	< 5	5	
1 1 1 Trichloroethane	< 5	5	
1,1,2 Trichloroethane	< 5	5	
Trichloroethane	< 5	5	
Trichlorofluoromothano	< 5	5	
	< 1	1	
1,2,3- Thenloropropane	< 1	1	
1,2,4-Thinediyibenzene	< 5	5	
	< 10	5	
	< 10	10	
	< <u>2</u>	2	
Xylene, Mar	< 5	5	
Xylene (Tetel)	< 5	5	
Nierre (Total)	< 10	10	
Dipromonuorometnane (surrogate)	98%		
Taluana de (aurre anta)			
I Oluene-ao (surrogate)	104%		
4-biomoliuoropenzene (surrogate)			
Analysis Date/Time:	6-27-23/00:38		
Analyst Initials	τjg		

Client Name:	SES			
Project ID:	2023-0635			
Client Project Manager:	GLEN HOWARD			
ENVision Project Number:	2023-1278			
Analytical Method: Prep Method: Analytical Batch:	EPA 8270SIM EPA 3511 062323PW5			
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 1 23-12318 water	Sample Collection Date/Time: Sample Received Date/Time:	6/21/23 6/22/23	13:20 14:30
<u>Compounds</u> Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1-methylnaphthalene 2-methylnaphthalene Naphthalene Phenanthrene Pyrene	Sample Results (ug/L) < 1.0 < 1.0 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.029 < 1.0 < 1.0	Reporting Limit (ug/L) 1.0 1.0 0.10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<u>Flags</u>	
Nitrobenzene-d5 (surrogate) 2-Fluorobiphenyl (surrogate) p-Terphenyl-d14 (surrogate) Analysis Date/Time: Analyst Initials Date Extracted Initial Sample Volume Final Volume	42% 43% 33% 6-23-23/09:53 gjd 6/23/23 40 mL 2.0 mL			

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639 www.envisionlaboratories.com

Client Name:	SES			
Project ID:	2023-0635			
Client Project Manager:	GLEN HOWARD			
ENVision Project Number:	2023-1278			
Analytical Method: Prep Method:	EPA 6010 EPA 3010A			
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 1 23-12318 water	Sample Collection Date/Time: Sample Received Date/Time:	6/21/23 6/22/23	13:20 14:30
<u>Compounds</u> Arsenic, total Cadmium, total Chromium, total Lead, total	<u>Sample Results (ug/L)</u> < 10 < 5 78 23	<u>Reporting Limit (ug/L)</u> 10 5 10 10	<u>Flags</u>	

Client Name:	SES	
Project ID:	2023-0635	
Client Project Manager:	GLEN HOWARD	
ENVision Project Number:	2023-1278	
Analytical Method: Prep Method: Analytical Batch:	EPA 8260 EPA 5030B 062623BVW	
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 2 23-12319 water	Samp Samp
<u>Compounds</u> Acetone Acrolein	<u>Sample Results (ug/l</u> < 100 < 1	<u>_) </u>
Acrylonitrile Benzene	< 0.45 < 5	
BOILOID	••	

Sample Collection Date/Time:	6/21/23	13:10
Sample Received Date/Time:	6/22/23	14:30

<u>Compounds</u>	Sample Results (ug/L)	Reporting Limit (ug/L)	<u>Flags</u>
Acetone	< 100	100	-
Acrolein	< 1	1	
Acrylonitrile	< 0.45	1	1
Benzene	< 5	5	
Bromobenzene	< 5	5	
Bromochloromethane	< 5	5	
Bromodichloromethane	< 5	5	
Bromoform	< 5	5	
Bromomethane	< 5	5	
n-Butanol	< 50	50	
2-Butanone (MEK)	< 10	10	
n-Butylbenzene	< 5	5	
sec-Butylbenzene	< 5	5	
tert-Butylbenzene	< 5	5	
Carbon Disulfide	< 5	5	
Carbon Tetrachloride	< 5	5	
Chlorobenzene	< 5	5	
Chloroethane	< 5	5	
2-Chloroethylvinylether	< 50	50	
Chloroform	< 5	5	
Chloromethane	< 5	5	
2-Chlorotoluene	< 5	5	
4-Chlorotoluene	< 5	5	
1,2-Dibromo-3-chloropropane	< 1	1	
Dibromochloromethane	< 5	5	
1,2-Dibromoethane (EDB)	< 1	1	
Dibromomethane	< 5	5	
1,2-Dichlorobenzene	< 5	5	
1,3-Dichlorobenzene	< 5	5	
1,4-Dichlorobenzene	< 5	5	
trans-1,4-Dichloro-2-butene	< 1	1	
Dichlorodifluoromethane	< 5	5	

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639 www.envisionlaboratories.com

8260 continued			
<u>Compounds</u>	<u>Sample Results (ug/L)</u>	<u>Reporting Limit (ug/L)</u>	<u>Flags</u>
1,1-Dichloroethane	< 5	5	
1,2-Dichloroethane	< 5	5	
1,1-Dichloroethene	< 5	5	
cis-1,2-Dichloroethene	< 5	5	
trans-1,2-Dichloroethene	< 5	5	
1,2-Dichloropropane	< 5	5	
1,3-Dichloropropane	< 5	5	
2.2-Dichloropropane	< 5	5	
1.1-Dichloropropene	< 5	5	
1,3-Dichloropropene	< 4.1	4.1	
Ethylbenzene	< 5	5	
Ethyl methacrylate	< 100	100	
Hexachloro-1.3-butadiene	< 2.6	2.6	
n-Hexane	< 10	10	
2-Hexanone	< 10	10	
lodomethane	< 10	10	
Isopropylbenzene (Cumene)	< 5	5	
p-lsopropyltoluene	< 5	5	
Methylene chloride	< 5	5	
4-Methyl-2-pentanone (MIBK)	< 10	10	
Methyl-tert-butyl-ether	< 5	5	
n-Propylbenzene	< 5	5	
Styrene	< 5	5	
1 1 1 2-Tetrachloroethane	< 5	5	
1 1 2 2-Tetrachloroethane	< 0.66	1	1
Tetrachloroethene	< 5	5	·
Toluene	< 5	5	
1 2 3-Trichlorobenzene	< 5	5	
1.2.4-Trichlorobenzene	< 5	5	
1 1 1-Trichloroethane	< 5	5	
1,1,2-Trichloroethane	< 5	5	
Trichloroethene	< 5	5	
Trichlorofluoromethane	< 5	5	
1 2 3-Trichloropropane	< 1	1	
1 2 4-Trimethylbenzene	< 5	5	
1 3 5-Trimethylbenzene	< 5	5	
Vinvl acetate	< 10	10	
Vinyl chloride	< 2	2	
Xvlene M&P	< 5	5	
Xylene Ortho	< 5	5	
Xylene (Total)	< 10	10	
Dibromofluoromethane (surrogate)	96%		
1 2-Dichloroethane-d4 (surrogate)	108%		
Toluene-d8 (surrogate)	104%		
4-bromofluorobenzene (surrogate)	106%		
Analysis Date/Time:	6-27-23/00:53		
Analyst Initials	tia		
,	าย		

1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639 www.envisionlaboratories.com

ENVision Laboratories, Inc.

Client Name:	SES			
Project ID:	2023-0635			
Client Project Manager:	GLEN HOWARD			
ENVision Project Number:	2023-1278			
Analytical Method: Prep Method: Analytical Batch:	EPA 8270SIM EPA 3511 062323PW5			
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 2 23-12319 water	Sample Collection Date/Time: Sample Received Date/Time:	6/21/23 6/22/23	13:10 14:30
Compounds Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluorene Indeno(1,2,3-cd)pyrene 1-methylnaphthalene Pananthrene Phenanthrene Pyrene	$\begin{array}{l} \textbf{Sample Results (ug/L)} \\ < 1.0 \\ < 1.0 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 1.0 \\ < 1.0 \\ < 1.0 \\ < 1.0 \\ < 1.0 \\ < 1.0 \\ < 1.0 \\ < 1.0 \\ < 1.0 \\ < 1.0 \\ < 1.0 \end{array}$	Reporting Limit (ug/L) 1.0 1.0 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<u>Flags</u>	
Nitrobenzene-d5 (surrogate) 2-Fluorobiphenyl (surrogate) p-Terphenyl-d14 (surrogate) Analysis Date/Time: Analyst Initials Date Extracted Initial Sample Volume Final Volume	57% 43% 48% 6-26-23/10:16 gjd 6/23/23 40 mL 2.0 mL			

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639 www.envisionlaboratories.com

Client Name:	SES			
Project ID:	2023-0635			
Client Project Manager:	GLEN HOWARD			
ENVision Project Number:	2023-1278			
Analytical Method: Prep Method:	EPA 6010 EPA 3010A			
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 2 23-12319 water	Sample Collection Date/Time: Sample Received Date/Time:	6/21/23 6/22/23	13:10 14:30
<u>Compounds</u>	Sample Results (ug/L)	Reporting Limit (ug/L)	Flags	
Arsenic, total Cadmium, total Chromium, total Lead, total	< 10 < 5 73 15	10 5 10 10		

Client Name:	SES	
Project ID:	2023-0635	
Client Project Manager:	GLEN HOWARD	
ENVision Project Number:	2023-1278	
Analytical Method: Prep Method: Analytical Batch:	EPA 8260 EPA 5030B 062623BVW	
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 3 23-12320 water	Sample Collection Date/Time: Sample Received Date/Time:
<u>Compounds</u>	Sample Results (ug/L)	Reporting Limit (ug/L)
Acetone	< 100	100
	- 1	1
Acrolein	< I	I
Acrolein Acrylonitrile	< 0.45	1
Acrolein Acrylonitrile Benzene	< 1 < 0.45 < 5	1 5
Acrolein Acrylonitrile Benzene Bromobenzene	< 1 < 0.45 < 5 < 5	1 5 5
Acrolein Acrylonitrile Benzene Bromobenzene Bromochloromethane	< 1 < 0.45 < 5 < 5 < 5 < 5	1 5 5 5
Acrolein Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane	< 1 < 0.45 < 5 < 5 < 5 < 5 < 5	1 5 5 5 5 5
Acrolein Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform	< 1 < 0.45 < 5 < 5 < 5 < 5 < 5 < 5	1 5 5 5 5 5 5
Acrolein Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane	< 1 < 0.45 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	1 5 5 5 5 5 5 5 5
Acrolein Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butanol	< 1 < 0.45 < 5 < 5 < 5 < 5 < 5 < 5 < 50	1 5 5 5 5 5 5 5 5 50
Acrolein Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butanol 2-Butanone (MEK)	< 1 < 0.45 < 5 < 5 < 5 < 5 < 5 < 50 < 10	1 5 5 5 5 5 5 50 10
Acrolein Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butanol 2-Butanone (MEK) n-Butylbenzene	< 1 < 0.45 < 5 < 5 < 5 < 5 < 5 < 50 < 10 < 5	1 5 5 5 5 5 5 50 10 5
Acrolein Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butanol 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene	< 1 < 0.45 < 5 < 5 < 5 < 5 < 5 < 50 < 10 < 5 < 5	1 5 5 5 5 5 5 50 10 5 5 5
Acrolein Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butanol 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene	< 1 < 0.45 < 5 < 5 < 5 < 5 < 5 < 50 < 10 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	1 5 5 5 5 5 5 50 10 5 5 5 5 5 5 5
Acrolein Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butanol 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Disulfide	< 1 < 0.45 < 5 < 5 < 5 < 5 < 5 < 50 < 10 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	1 5 5 5 5 5 5 50 10 5 5 5 5 5 5 5 5 5 5
Acrolein Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butanol 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Disulfide Carbon Tetrachloride	< 1 < 0.45 < 5 < 5 < 5 < 5 < 5 < 50 < 10 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	1 5 5 5 5 5 5 50 10 5 5 5 5 5 5 5 5 5 5

1

<u>Flags</u>

6/21/23 12:15

6/22/23 14:30

Bromotorm	< 5	5
Bromomethane	< 5	5
n-Butanol	< 50	50
2-Butanone (MEK)	< 10	10
n-Butylbenzene	< 5	5
sec-Butylbenzene	< 5	5
tert-Butylbenzene	< 5	5
Carbon Disulfide	< 5	5
Carbon Tetrachloride	< 5	5
Chlorobenzene	< 5	5
Chloroethane	< 5	5
2-Chloroethylvinylether	< 50	50
Chloroform	< 5	5
Chloromethane	< 5	5
2-Chlorotoluene	< 5	5
4-Chlorotoluene	< 5	5
1,2-Dibromo-3-chloropropane	< 1	1
Dibromochloromethane	< 5	5
1,2-Dibromoethane (EDB)	< 1	1
Dibromomethane	< 5	5
1,2-Dichlorobenzene	< 5	5
1,3-Dichlorobenzene	< 5	5
1,4-Dichlorobenzene	< 5	5
trans-1,4-Dichloro-2-butene	< 1	1
Dichlorodifluoromethane	< 5	5

8260 continued			
<u>Compounds</u>	<u>Sample Results (ug/L)</u>	<u>Reporting Limit (ug/L)</u>	<u>Flags</u>
1,1-Dichloroethane	< 5	5	
1,2-Dichloroethane	< 5	5	
1,1-Dichloroethene	< 5	5	
cis-1,2-Dichloroethene	< 5	5	
trans-1,2-Dichloroethene	< 5	5	
1,2-Dichloropropane	< 5	5	
1,3-Dichloropropane	< 5	5	
2,2-Dichloropropane	< 5	5	
1,1-Dichloropropene	< 5	5	
1,3-Dichloropropene	< 4.1	4.1	
Ethylbenzene	< 5	5	
Ethyl methacrylate	< 100	100	
Hexachloro-1,3-butadiene	< 2.6	2.6	
n-Hexane	< 10	10	
2-Hexanone	< 10	10	
lodomethane	< 10	10	
Isopropylbenzene (Cumene)	< 5	5	
p-lsopropyltoluene	< 5	5	
Methylene chloride	< 5	5	
4-Methyl-2-pentanone (MIBK)	< 10	10	
Methyl-tert-butyl-ether	< 5	5	
n-Propylbenzene	< 5	5	
Styrene	< 5	5	
1.1.1.2-Tetrachloroethane	< 5	5	
1,1,2,2-Tetrachloroethane	< 0.66	1	1
Tetrachloroethene	< 5	5	·
Toluene	< 5	5	
1.2.3-Trichlorobenzene	< 5	5	
1 2 4-Trichlorobenzene	< 5	5	
1 1 1-Trichloroethane	< 5	5	
1 1 2-Trichloroethane	< 5	5	
Trichloroethene	< 5	5	
Trichlorofluoromethane	< 5	5	
1 2 3-Trichloropropage	< 1	1	
1.2.4-Trimethylbenzene	< 5	5	
1 3 5-Trimethylbenzene	< 5	5	
Vinvl acetate	< 10	10	
	< 2	2	
Yulene M&P	~ 2	5	
Xylene, Mar	< 5	5	
Xylene (Tetal)	< 10	10	
Dibromofluoromothana (surragata)	< 10 07%	10	
1.2 Diobleroothana d4 (ourregate)	9770		
Toluopo de (ourregate)			
A bromofluorobonzono (ourroante)	99% 106%		
4-biomonuorobenzene (surrogate)			
Analysis Date/Time:	6-27-23/01:09		
Analyst Initials	τjg		

Client Name:	SES			
Project ID:	2023-0635			
Client Project Manager:	GLEN HOWARD			
ENVision Project Number:	2023-1278			
Analytical Method: Prep Method: Analytical Batch:	EPA 8270SIM EPA 3511 062323PW5			
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 3 23-12320 water	Sample Collection Date/Time: Sample Received Date/Time:	6/21/23 6/22/23	12:15 14:30
Compounds Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluorene Indeno(1,2,3-cd)pyrene 1-methylnaphthalene 2-methylnaphthalene Phenanthrene Pyrene	$\begin{array}{l} \textbf{Sample Results (ug/L)} \\ < 1.0 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.10 \\ < 0.029 \\ < 1.0 \\ < 1.0 \\ < 1.0 \\ < 1.0 \\ < 1.0 \\ < 1.0 \\ < 1.0 \\ < 1.0 \\ < 1.0 \\ < 1.0 \\ < 1.0 \\ < 1.0 \\ < 1.0 \end{array}$	Reporting Limit (ug/L) 1.0 1.0 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<u>Flags</u>	
Nitrobenzene-d5 (surrogate) 2-Fluorobiphenyl (surrogate) p-Terphenyl-d14 (surrogate) Analysis Date/Time: Analyst Initials Date Extracted Initial Sample Volume Final Volume	56% 43% 50% 6-26-23/10:38 gjd 6/23/23 40 mL 2.0 mL			

tert-Butylbenzene Carbon Disulfide

Chlorobenzene

Chloromethane

2-Chlorotoluene

4-Chlorotoluene

Dibromomethane

1,2-Dichlorobenzene

1,3-Dichlorobenzene 1,4-Dichlorobenzene

Chloroethane

Chloroform

Carbon Tetrachloride

2-Chloroethylvinylether

Dibromochloromethane

1,2-Dibromoethane (EDB)

trans-1,4-Dichloro-2-butene

Dichlorodifluoromethane

1,2-Dibromo-3-chloropropane

6/21/23 12:30

6/22/23 14:30

<u>Flags</u>

1

5

5

5 5

5

50

5

5

5

5

1

5

1

5

5 5

5

1

5

Analytical Report

Client Name:	SES	
Project ID:	2023-0635	
Client Project Manager:	GLEN HOWARD	
ENVision Project Number:	2023-1278	
Analytical Method: Prep Method: Analytical Batch:	EPA 8260 EPA 5030B 062623BVW	
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 4 23-12321 water	Sample Collection Date/Time: Sample Received Date/Time:
<u>Compounds</u>	Sample Results (ug/L)	<u>Reporting Limit (ug/L)</u>
<u>Compounds</u> Acetone	<u>Sample Results (ug/L)</u> < 100	Reporting Limit (ug/L) 100
<u>Compounds</u> Acetone Acrolein	<u>Sample Results (ug/L)</u> < 100 < 1	Reporting Limit (ug/L) 100 1
<u>Compounds</u> Acetone Acrolein Acrylonitrile	<u>Sample Results (ug/L)</u> < 100 < 1 < 0.45	Reporting Limit (ug/L) 100 1 1
<u>Compounds</u> Acetone Acrolein Acrylonitrile Benzene	<u>Sample Results (ug/L)</u> < 100 < 1 < 0.45 < 5	<u>Reporting Limit (ug/L)</u> 100 1 1 5
<u>Compounds</u> Acetone Acrolein Acrylonitrile Benzene Bromobenzene	<u>Sample Results (ug/L)</u> < 100 < 1 < 0.45 < 5 < 5 < 5	<u>Reporting Limit (ug/L)</u> 100 1 1 5 5 5
<u>Compounds</u> Acetone Acrolein Acrylonitrile Benzene Bromobenzene Bromochloromethane	<u>Sample Results (ug/L)</u> < 100 < 1 < 0.45 < 5 < 5 < 5 < 5	<u>Reporting Limit (ug/L)</u> 100 1 1 5 5 5 5
<u>Compounds</u> Acetone Acrolein Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane	<u>Sample Results (ug/L)</u> < 100 < 1 < 0.45 < 5 < 5 < 5 < 5 < 5 < 5	Reporting Limit (ug/L) 100 1 1 5 5 5 5 5 5 5
<u>Compounds</u> Acetone Acrolein Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform	<u>Sample Results (ug/L)</u> < 100 < 1 < 0.45 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	Reporting Limit (ug/L) 100 1 5 5 5 5 5 5 5 5 5 5
<u>Compounds</u> Acetone Acrolein Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane	<u>Sample Results (ug/L)</u> < 100 < 1 < 0.45 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 <	Reporting Limit (ug/L) 100 1 5
<u>Compounds</u> Acetone Acrolein Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butanol	<u>Sample Results (ug/L)</u> < 100 < 1 < 0.45 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 <	Reporting Limit (ug/L) 100 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Compounds Acetone Acrolein Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butanol 2-Butanone (MEK)	<u>Sample Results (ug/L)</u> < 100 < 1 < 0.45 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 <	Reporting Limit (ug/L) 100 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 50 10
Compounds Acetone Acrolein Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butanol 2-Butanone (MEK) n-Butylbenzene	<u>Sample Results (ug/L)</u> < 100 < 1 < 0.45 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 <	Reporting Limit (ug/L) 100 1 50 10 5

< 5

< 5

< 5

< 5

< 5

< 50

< 5

< 5

< 5

< 5

< 1

< 5

< 1

< 5

< 5

< 5

< 5

< 1

< 5

8260 continued			
<u>Compounds</u>	<u>Sample Results (ug/L)</u>	<u>Reporting Limit (ug/L)</u>	<u>Flags</u>
1,1-Dichloroethane	< 5	5	
1,2-Dichloroethane	< 5	5	
1,1-Dichloroethene	< 5	5	
cis-1,2-Dichloroethene	< 5	5	
trans-1,2-Dichloroethene	< 5	5	
1,2-Dichloropropane	< 5	5	
1,3-Dichloropropane	< 5	5	
2,2-Dichloropropane	< 5	5	
1,1-Dichloropropene	< 5	5	
1,3-Dichloropropene	< 4.1	4.1	
Ethylbenzene	< 5	5	
Ethyl methacrylate	< 100	100	
Hexachloro-1,3-butadiene	< 2.6	2.6	
n-Hexane	< 10	10	
2-Hexanone	< 10	10	
lodomethane	< 10	10	
Isopropylbenzene (Cumene)	< 5	5	
p-Isopropyltoluene	< 5	5	
Methylene chloride	< 5	5	
4-Methyl-2-pentanone (MIBK)	< 10	10	
Methyl-tert-butyl-ether	< 5	5	
n-Propylbenzene	< 5	5	
Styrene	< 5	5	
1.1.1.2-Tetrachloroethane	< 5	5	
1.1.2.2-Tetrachloroethane	< 0.66	1	1
Tetrachloroethene	< 5	5	
Toluene	< 5	5	
1.2.3-Trichlorobenzene	< 5	5	
1.2.4-Trichlorobenzene	< 5	5	
1.1.1-Trichloroethane	< 5	5	
1.1.2-Trichloroethane	< 5	5	
Trichloroethene	< 5	5	
Trichlorofluoromethane	< 5	5	
1.2.3-Trichloropropane	< 1	1	
1.2.4-Trimethylbenzene	< 5	5	
1.3.5-Trimethylbenzene	< 5	5	
Vinvl acetate	< 10	10	
Vinyl chloride	< 2	2	
Xvlene, M&P	< 5	- 5	
Xylene Ortho	< 5	5	
Xylene (Total)	< 10	10	
Dibromofluoromethane (surrogate)	96%		
1 2-Dichloroethane-d4 (surrogate)	108%		
Toluene-d8 (surrogate)	103%		
4-bromofluorobenzene (surrogate)	103%		
Analysis Date/Time	6-27-23/01.24		
Analyst Initials	tia		
	79		

Client Name:	SES			
Project ID:	2023-0635			
Client Project Manager:	GLEN HOWARD			
ENVision Project Number:	2023-1278			
Analytical Method: Prep Method: Analytical Batch:	EPA 8270SIM EPA 3511 062323PW5			
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 4 23-12321 water	Sample Collection Date/Time: Sample Received Date/Time:	6/21/23 6/22/23	12:30 14:30
<u>Compounds</u> Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluorene Indeno(1,2,3-cd)pyrene 1-methylnaphthalene 2-methylnaphthalene Naphthalene Phenanthrene Pyrene	Sample Results (ug/L) < 1.0 < 1.0 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.029 < 1.0 < 1.0	Reporting Limit (ug/L) 1.0 1.0 0.10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<u>Flags</u>	
Nitrobenzene-d5 (surrogate) 2-Fluorobiphenyl (surrogate) p-Terphenyl-d14 (surrogate) Analysis Date/Time: Analyst Initials Date Extracted Initial Sample Volume Final Volume	46% 45% 52% 6-26-23/11:00 gjd 6/23/23 40 mL 2.0 mL			

Client Name:	SES	
Project ID:	2023-0635	
Client Project Manager:	GLEN HOWARD	
ENVision Project Number:	2023-1278	
Analytical Method: Prep Method: Analytical Batch:	EPA 8260 EPA 5030B 062723VW	
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 5 23-12322 water	Sampl Sampl
Compounds Acetone	Sample Results (ug/L) < 100	<u>R</u>

Sample Collection Date/Time:	6/21/23	11:00
Sample Received Date/Time:	6/22/23	14:30

<u>Compounds</u>	Sample Results (ug/L)	Reporting Limit (ug/L)	<u>Flags</u>
Acetone	< 100	100	
Acrolein	< 1	1	
Acrylonitrile	< 0.45	1	1
Benzene	< 5	5	
Bromobenzene	< 5	5	
Bromochloromethane	< 5	5	
Bromodichloromethane	< 5	5	
Bromoform	< 5	5	
Bromomethane	< 5	5	
n-Butanol	< 50	50	
2-Butanone (MEK)	< 10	10	
n-Butylbenzene	< 5	5	
sec-Butylbenzene	< 5	5	
tert-Butylbenzene	< 5	5	
Carbon Disulfide	< 5	5	
Carbon Tetrachloride	< 5	5	
Chlorobenzene	< 5	5	
Chloroethane	< 5	5	
2-Chloroethylvinylether	< 50	50	
Chloroform	< 5	5	
Chloromethane	< 5	5	
2-Chlorotoluene	< 5	5	
4-Chlorotoluene	< 5	5	
1,2-Dibromo-3-chloropropane	< 1	1	
Dibromochloromethane	< 5	5	
1,2-Dibromoethane (EDB)	< 1	1	
Dibromomethane	< 5	5	
1,2-Dichlorobenzene	< 5	5	
1,3-Dichlorobenzene	< 5	5	
1,4-Dichlorobenzene	< 5	5	
trans-1,4-Dichloro-2-butene	< 1	1	
Dichlorodifluoromethane	< 5	5	

8260 continued			
<u>Compounds</u>	<u>Sample Results (ug/L)</u>	<u>Reporting Limit (ug/L)</u>	<u>Flags</u>
1,1-Dichloroethane	< 5	5	
1,2-Dichloroethane	< 5	5	
1,1-Dichloroethene	< 5	5	
cis-1,2-Dichloroethene	< 5	5	
trans-1,2-Dichloroethene	< 5	5	
1,2-Dichloropropane	< 5	5	
1,3-Dichloropropane	< 5	5	
2,2-Dichloropropane	< 5	5	
1,1-Dichloropropene	< 5	5	
1,3-Dichloropropene	< 4.1	4.1	
Ethylbenzene	< 5	5	
Ethyl methacrylate	< 100	100	
Hexachloro-1.3-butadiene	< 2.6	2.6	
n-Hexane	< 10	10	
2-Hexanone	< 10	10	
lodomethane	< 10	10	
Isopropylbenzene (Cumene)	< 5	5	
p-lsopropyltoluene	< 5	5	
Methylene chloride	< 5	5	
4-Methyl-2-pentanone (MIBK)	< 10	10	
Methyl-tert-butyl-ether	< 5	5	
n-Propylbenzene	< 5	5	
Styrene	< 5	5	
1 1 1 2-Tetrachloroethane	< 5	5	
1 1 2 2-Tetrachloroethane	< 0.66	1	1
Tetrachloroethene	< 5	5	·
Toluene	< 5	5	
1 2 3-Trichlorobenzene	< 5	5	
1 2 4-Trichlorobenzene	< 5	5	
1 1 1-Trichloroethane	< 5	5	
1 1 2-Trichloroethane	< 5	5	
Trichloroethene	< 5	5	
Trichlorofluoromethane	< 5	5	
1 2 3-Trichloropropane	< 1	1	
1 2 4-Trimethylbenzene	< 5	5	
1.3.5-Trimethylbenzene	< 5	5	
Vinvl acetate	< 10	10	
Vinyl chloride	< 2	2	
Xvlene M&P	< 5	5	
Xylene Ortho	< 5	5	
Xylene (Total)	< 10	10	
Dibromofluoromethane (surrogate)	96%		
1 2-Dichloroethane-d4 (surrogate)	106%		
Toluene-d8 (surrogate)	100%		
4-bromofluorobenzene (surrogate)	109%		
Analysis Date/Time:	6-27-23/12.08		
Analyst Initials	tia		
	19		

Client Name:	SES			
Project ID:	2023-0635			
Client Project Manager:	GLEN HOWARD			
ENVision Project Number:	2023-1278			
Analytical Method: Prep Method: Analytical Batch:	EPA 8270SIM EPA 3511 062323PW5			
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 5 23-12322 water	Sample Collection Date/Time: Sample Received Date/Time:	6/21/23 6/22/23	11:00 14:30
<u>Compounds</u>	Sample Results (ug/L)	Reporting Limit (ug/L)	<u>Flags</u>	
Acenaphthene	< 1.0	1.0		
Acenaphthylene	< 1.0	1.0		
Anthracene	< 0.10	0.10		
Benzo(a)anthracene	< 0.10	0.10		
Benzo(a)pyrene	< 0.10	0.10		
Benzo(b)fluoranthene	< 0.10	0.10		
Benzo(g,h,i)perylene	< 0.10	0.10		
Benzo(k)fluoranthene	< 0.10	0.10		
Chrysene	< 0.10	0.10		
Dibenzo(a,h)anthracene	< 0.029	0.029		
Fluoranthene	< 1.0	1.0		
Fluorene	< 1.0	1.0		
Indeno(1,2,3-cd)pyrene	< 0.022	0.022		
1-methylnaphthalene	< 1.0	1.0		
2-methylnaphthalene	< 1.0	1.0		
Naphthalene	< 1.0	1.0		
Phenanthrene	< 1.0	1.0		
Pyrene	< 1.0	1.0		
Nitrobenzene-d5 (surrogate)	46%			
2-Fluorobiphenyl (surrogate)	45%			
p-Terphenyl-d14 (surrogate)	49%			
Analysis Date/Time:	6-26-23/11:23			
Analyst Initials	gjd			
Date Extracted	6/23/23			
Initial Sample Volume	40 mL			
Final Volume	2.0 mL			

Client Name:	SES			
Project ID:	2023-0635			
Client Project Manager:	GLEN HOWARD			
ENVision Project Number:	2023-1278			
Analytical Method: Prep Method:	EPA 6010 EPA 3010A			
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 5 23-12322 water	Sample Collection Date/Time: Sample Received Date/Time:	6/21/23 6/22/23	11:00 14:30
	Mater			
<u>Compounds</u> Arsenic, total Cadmium, total Chromium, total Lead, total	Sample Results (ug/L) < 10 < 5 17 < 10	Reporting Limit (ug/L) 10 5 10 10	<u>Flags</u>	

Client Name:	SES	
Project ID:	2023-0635	
Client Project Manager:	GLEN HOWARD	
ENVision Project Number:	2023-1278	
Analytical Method: Prep Method: Analytical Batch:	EPA 8260 EPA 5030B 062723VW	
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 6 23-12323 water	San San
Compounds Acetone	<u>Sample Results (ug/L)</u> < 100	

Sample Collection Date/Time:	6/21/23	12:45
Sample Received Date/Time:	6/22/23	14:30

<u>Compounds</u>	Sample Results (ug/L)	Reporting Limit (ug/L)	Flags
Acetone	< 100	100	
Acrolein	< 1	1	
Acrylonitrile	< 0.45	1	1
Benzene	< 5	5	
Bromobenzene	< 5	5	
Bromochloromethane	< 5	5	
Bromodichloromethane	< 5	5	
Bromoform	< 5	5	
Bromomethane	< 5	5	
n-Butanol	< 50	50	
2-Butanone (MEK)	< 10	10	
n-Butylbenzene	< 5	5	
sec-Butylbenzene	< 5	5	
tert-Butylbenzene	< 5	5	
Carbon Disulfide	< 5	5	
Carbon Tetrachloride	< 5	5	
Chlorobenzene	< 5	5	
Chloroethane	< 5	5	
2-Chloroethylvinylether	< 50	50	
Chloroform	< 5	5	
Chloromethane	< 5	5	
2-Chlorotoluene	< 5	5	
4-Chlorotoluene	< 5	5	
1,2-Dibromo-3-chloropropane	< 1	1	
Dibromochloromethane	< 5	5	
1,2-Dibromoethane (EDB)	< 1	1	
Dibromomethane	< 5	5	
1,2-Dichlorobenzene	< 5	5	
1,3-Dichlorobenzene	< 5	5	
1,4-Dichlorobenzene	< 5	5	
trans-1,4-Dichloro-2-butene	< 1	1	
Dichlorodifluoromethane	< 5	5	

8260 continued			
<u>Compounds</u>	Sample Results (ug/L)	<u>Reporting Limit (ug/L)</u>	Flags
1,1-Dichloroethane	< 5	5	
1,2-Dichloroethane	< 5	5	
1,1-Dichloroethene	< 5	5	
cis-1,2-Dichloroethene	< 5	5	
trans-1,2-Dichloroethene	< 5	5	
1,2-Dichloropropane	< 5	5	
1,3-Dichloropropane	< 5	5	
2,2-Dichloropropane	< 5	5	
1,1-Dichloropropene	< 5	5	
1,3-Dichloropropene	< 4.1	4.1	
Ethylbenzene	< 5	5	
Ethyl methacrylate	< 100	100	
Hexachloro-1,3-butadiene	< 2.6	2.6	
n-Hexane	< 10	10	
2-Hexanone	< 10	10	
lodomethane	< 10	10	
Isopropylbenzene (Cumene)	< 5	5	
p-lsopropyltoluene	< 5	5	
Methylene chloride	< 5	5	
4-Methyl-2-pentanone (MIBK)	< 10	10	
Methyl-tert-butyl-ether	< 5	5	
n-Propylbenzene	< 5	5	
Styrene	< 5	5	
1.1.1.2-Tetrachloroethane	< 5	5	
1,1,2,2-Tetrachloroethane	< 0.66	1	1
Tetrachloroethene	< 5	5	·
Toluene	< 5	5	
1.2.3-Trichlorobenzene	< 5	5	
1.2.4-Trichlorobenzene	< 5	5	
1.1.1-Trichloroethane	< 5	5	
1.1.2-Trichloroethane	< 5	5	
Trichloroethene	< 5	5	
Trichlorofluoromethane	< 5	5	
1.2.3-Trichloropropane	< 1	1	
1.2.4-Trimethylbenzene	< 5	5	
1.3.5-Trimethylbenzene	< 5	5	
Vinvl acetate	< 10	10	
Vinvl chloride	< 2	2	
Xvlene, M&P	< 5	5	
Xvlene, Ortho	< 5	5	
Xvlene (Total)	< 10	10	
Dibromofluoromethane (surrogate)	96%	-	
1,2-Dichloroethane-d4 (surrogate)	105%		
Toluene-d8 (surrogate)	101%		
4-bromofluorobenzene (surrogate)	107%		
Analysis Date/Time:	6-27-23/12:24		
Analyst Initials	tjg		

Client Name:	SES			
Project ID:	2023-0635			
Client Project Manager:	GLEN HOWARD			
ENVision Project Number:	2023-1278			
Analytical Method: Prep Method: Analytical Batch:	EPA 8270SIM EPA 3511 062323PW5			
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 6 23-12323 water	Sample Collection Date/Time: Sample Received Date/Time:	6/21/23 6/22/23	12:45 14:30
<u>Compounds</u> Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1-methylnaphthalene 2-methylnaphthalene Naphthalene Phenanthrene Pyrene	Sample Results (ug/L) < 1.0 < 1.0 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.029 < 1.0 < 1.0	Reporting Limit (ug/L) 1.0 1.0 0.10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<u>Flags</u>	
Nitrobenzene-d5 (surrogate) 2-Fluorobiphenyl (surrogate) p-Terphenyl-d14 (surrogate) Analysis Date/Time: Analyst Initials Date Extracted Initial Sample Volume Final Volume	50% 46% 53% 6-26-23/11:45 gjd 6/23/23 40 mL 2.0 mL			

Client Name:	SES			
Project ID:	2023-0635			
Client Project Manager:	GLEN HOWARD			
ENVision Project Number:	2023-1278			
Analytical Method: Prep Method:	EPA 6010 EPA 3010A			
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 6 23-12323 water	Sample Collection Date/Time: Sample Received Date/Time:	6/21/23 6/22/23	12:45 14:30
-				
<u>Compounds</u> Arsenic, total Cadmium, total Chromium, total Lead, total	<u>Sample Results (ug/L)</u> < 10 < 5 14 < 10	<u>Reporting Limit (ug/L)</u> 10 5 10 10	<u>Flags</u>	

Client Name:	SES
Project ID:	2023-0635
Client Project Manager:	GLEN HOWARD
ENVision Project Number:	2023-1278
Analytical Method: Prep Method: Analytical Batch:	EPA 8260 EPA 5030B 062723VW
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 7 Sa 23-12324 Sa water
<u>Compounds</u> Acetone Acrolein Acrylonitrile	<u>Sample Results (ug/L)</u> < 100 < 1 < 0.45

Sample Collection Date/Time:	6/21/23	11:47
Sample Received Date/Time:	6/22/23	14:30

<u>Compounds</u>	Sample Results (ug/L)	Reporting Limit (ug/L)	<u>Flags</u>
Acetone	< 100	100	
Acrolein	< 1	1	
Acrylonitrile	< 0.45	1	1
Benzene	< 5	5	
Bromobenzene	< 5	5	
Bromochloromethane	< 5	5	
Bromodichloromethane	< 5	5	
Bromoform	< 5	5	
Bromomethane	< 5	5	
n-Butanol	< 50	50	
2-Butanone (MEK)	< 10	10	
n-Butylbenzene	< 5	5	
sec-Butylbenzene	< 5	5	
tert-Butylbenzene	< 5	5	
Carbon Disulfide	< 5	5	
Carbon Tetrachloride	< 5	5	
Chlorobenzene	< 5	5	
Chloroethane	< 5	5	
2-Chloroethylvinylether	< 50	50	
Chloroform	< 5	5	
Chloromethane	< 5	5	
2-Chlorotoluene	< 5	5	
4-Chlorotoluene	< 5	5	
1,2-Dibromo-3-chloropropane	< 1	1	
Dibromochloromethane	< 5	5	
1,2-Dibromoethane (EDB)	< 1	1	
Dibromomethane	< 5	5	
1,2-Dichlorobenzene	< 5	5	
1,3-Dichlorobenzene	< 5	5	
1,4-Dichlorobenzene	< 5	5	
trans-1,4-Dichloro-2-butene	< 1	1	
Dichlorodifluoromethane	< 5	5	

8260 continued			
<u>Compounds</u>	<u>Sample Results (ug/L)</u>	<u>Reporting Limit (ug/L)</u>	<u>Flags</u>
1,1-Dichloroethane	< 5	5	
1,2-Dichloroethane	< 5	5	
1,1-Dichloroethene	< 5	5	
cis-1,2-Dichloroethene	< 5	5	
trans-1,2-Dichloroethene	< 5	5	
1,2-Dichloropropane	< 5	5	
1,3-Dichloropropane	< 5	5	
2,2-Dichloropropane	< 5	5	
1,1-Dichloropropene	< 5	5	
1,3-Dichloropropene	< 4.1	4.1	
Ethylbenzene	< 5	5	
Ethyl methacrylate	< 100	100	
Hexachloro-1.3-butadiene	< 2.6	2.6	
n-Hexane	< 10	10	
2-Hexanone	< 10	10	
lodomethane	< 10	10	
Isopropylbenzene (Cumene)	< 5	5	
p-lsopropyltoluene	< 5	5	
Methylene chloride	< 5	5	
4-Methyl-2-pentanone (MIBK)	< 10	10	
Methyl-tert-butyl-ether	< 5	5	
n-Propylbenzene	< 5	5	
Styrene	< 5	5	
1 1 1 2-Tetrachloroethane	< 5	5	
1 1 2 2-Tetrachloroethane	< 0.66	1	1
Tetrachloroethene	< 5	5	·
Toluene	< 5	5	
1 2 3-Trichlorobenzene	< 5	5	
1 2 4-Trichlorobenzene	< 5	5	
1 1 1-Trichloroethane	< 5	5	
1 1 2-Trichloroethane	< 5	5	
Trichloroethene	< 5	5	
Trichlorofluoromethane	< 5	5	
1 2 3-Trichloropropane	< 1	1	
1 2 4-Trimethylbenzene	< 5	5	
1.3.5-Trimethylbenzene	< 5	5	
Vinvl acetate	< 10	10	
Vinyl chloride	< 2	2	
Xvlene M&P	< 5	5	
Xylene Ortho	< 5	5	
Xylene (Total)	< 10	10	
Dibromofluoromethane (surrogate)	98%	10	
1 2-Dichloroethane-d4 (surrogate)	107%		
Toluene-d8 (surrogate)	101%		
4-bromofluorobenzene (surrogate)	112%		
Analysis Date/Time:	6-27-23/12:30		
Analyst Initials	tin		
,	19		

Client Name:	SES			
Project ID:	2023-0635			
Client Project Manager:	GLEN HOWARD			
ENVision Project Number:	2023-1278			
Analytical Method: Prep Method: Analytical Batch:	EPA 8270SIM EPA 3511 062323PW5			
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 7 23-12324 water	Sample Collection Date/Time: Sample Received Date/Time:	6/21/23 6/22/23	11:47 14:30
Compounds Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1-methylnaphthalene 2-methylnaphthalene Naphthalene Phenanthrene	Sample Results (ug/L) < 1.0 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.029 < 1.0 < 0.10 < 1.0 < 1.0	Reporting Limit (ug/L) 1.0 1.0 0.10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<u>Flags</u>	
Pyrene Nitrobenzene-d5 (surrogate) 2-Fluorobiphenyl (surrogate) p-Terphenyl-d14 (surrogate) Analysis Date/Time: Analyst Initials Date Extracted Initial Sample Volume Final Volume	< 1.0 53% 40% 6-26-23/12:07 gjd 6/23/23 40 mL 2.0 mL	1.0		

Client Name:	SES			
Project ID:	2023-0635			
Client Project Manager:	GLEN HOWARD			
ENVision Project Number:	2023-1278			
Analytical Method: Prep Method:	EPA 6010 EPA 3010A			
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 7 23-12324 water	Sample Collection Date/Time: Sample Received Date/Time:	6/21/23 11 6/22/23 14	:47 :30
Compounds	Sample Results (ug/L)	Reporting Limit (ug/L)	<u>Flags</u>	
Cadmium, total Chromium, total Lead, total	< 10 < 5 18 < 10	5 10 10		

Client Name:	SES	
Project ID:	2023-0635	
Client Project Manager:	GLEN HOWARD	
ENVision Project Number:	2023-1278	
Analytical Method: Prep Method: Analytical Batch:	EPA 8260 EPA 5030B 062723VW	
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 8 23-12325 water	Sam Sam
<u>Compounds</u> Acetone	<u>Sample Results (ug/L)</u> < 100	

Sample Collection Date/Time:	6/21/23	12:45
Sample Received Date/Time:	6/22/23	14:30

<u>Compounds</u>	Sample Results (ug/L)	Reporting Limit (ug/L)	Flags
Acetone	< 100	100	
Acrolein	< 1	1	
Acrylonitrile	< 0.45	1	1
Benzene	< 5	5	
Bromobenzene	< 5	5	
Bromochloromethane	< 5	5	
Bromodichloromethane	< 5	5	
Bromoform	< 5	5	
Bromomethane	< 5	5	
n-Butanol	< 50	50	
2-Butanone (MEK)	< 10	10	
n-Butylbenzene	< 5	5	
sec-Butylbenzene	< 5	5	
tert-Butylbenzene	< 5	5	
Carbon Disulfide	< 5	5	
Carbon Tetrachloride	< 5	5	
Chlorobenzene	< 5	5	
Chloroethane	< 5	5	
2-Chloroethylvinylether	< 50	50	
Chloroform	< 5	5	
Chloromethane	< 5	5	
2-Chlorotoluene	< 5	5	
4-Chlorotoluene	< 5	5	
1,2-Dibromo-3-chloropropane	< 1	1	
Dibromochloromethane	< 5	5	
1,2-Dibromoethane (EDB)	< 1	1	
Dibromomethane	< 5	5	
1,2-Dichlorobenzene	< 5	5	
1,3-Dichlorobenzene	< 5	5	
1,4-Dichlorobenzene	< 5	5	
trans-1,4-Dichloro-2-butene	< 1	1	
Dichlorodifluoromethane	< 5	5	

8260 continued			
<u>Compounds</u>	<u>Sample Results (ug/L)</u>	Reporting Limit (ug/L)	Flags
1,1-Dichloroethane	< 5	5	
1,2-Dichloroethane	< 5	5	
1,1-Dichloroethene	< 5	5	
cis-1,2-Dichloroethene	< 5	5	
trans-1,2-Dichloroethene	< 5	5	
1,2-Dichloropropane	< 5	5	
1,3-Dichloropropane	< 5	5	
2.2-Dichloropropane	< 5	5	
1,1-Dichloropropene	< 5	5	
1,3-Dichloropropene	< 4.1	4.1	
Ethylbenzene	< 5	5	
Ethyl methacrylate	< 100	100	
Hexachloro-1.3-butadiene	< 2.6	2.6	
n-Hexane	< 10	10	
2-Hexanone	< 10	10	
lodomethane	< 10	10	
Isopropylbenzene (Cumene)	< 5	5	
p-lsopropyltoluene	< 5	5	
Methylene chloride	< 5	5	
4-Methyl-2-pentanone (MIBK)	< 10	10	
Methyl-tert-butyl-ether	< 5	5	
n-Propylbenzene	< 5	5	
Styrene	< 5	5	
1 1 1 2-Tetrachloroethane	< 5	5	
1 1 2 2-Tetrachloroethane	< 0.66	1	1
Tetrachloroethene	< 5	5	·
Toluene	< 5	5	
1 2 3-Trichlorobenzene	< 5	5	
1 2 4-Trichlorobenzene	< 5	5	
1 1 1-Trichloroethane	< 5	5	
1 1 2-Trichloroethane	< 5	5	
Trichloroethene	< 5	5	
Trichlorofluoromethane	< 5	5	
1 2 3-Trichloropropane	< 1	1	
1 2 4-Trimethylbenzene	< 5	5	
1.3.5-Trimethylbenzene	< 5	5	
Vinvl acetate	< 10	10	
Vinyl chloride	< 2	2	
Xvlene M&P	< 5	5	
Xylene Ortho	< 5	5	
Xylene (Total)	< 10	10	
Dibromofluoromethane (surrogate)	95%		
1 2-Dichloroethane-d4 (surrogate)	105%		
Toluene-d8 (surrogate)	99%		
4-bromofluorobenzene (surrogate)	110%		
Analysis Date/Time:	6-27-23/12:55		
Analyst Initials	tin		
, anaryot mitialo	4 9		

Client Name:	SES			
Project ID:	2023-0635			
Client Project Manager:	GLEN HOWARD			
ENVision Project Number:	2023-1278			
Analytical Method: Prep Method: Analytical Batch:	EPA 8270SIM EPA 3511 062323PW5			
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 8 23-12325 water	Sample Collection Date/Time: Sample Received Date/Time:	6/21/23 6/22/23	12:45 14:30
Compounds	Sample Results (ug/L)	<u>Reporting Limit (ug/L)</u>	<u>Flags</u>	
Acenaphthene	< 1.0	1.0		
Acenaphthylene	< 1.0	1.0		
Anthracene	< 0.10	0.10		
Benzo(a)anthracene	< 0.10	0.10		
Benzo(a)pyrene	< 0.10	0.10		
Benzo(b)fluoranthene	< 0.10	0.10		
Benzo(g,h,i)perylene	< 0.10	0.10		
Benzo(k)fluoranthene	< 0.10	0.10		
Chrysene	< 0.10	0.10		
Dibenzo(a,h)anthracene	< 0.029	0.029		
Fluoranthene	< 1.0	1.0		
Fluorene	< 1.0	1.0		
Indeno(1,2,3-cd)pyrene	< 0.022	0.022		
1-methylnaphthalene	< 1.0	1.0		
2-methylnaphthalene	< 1.0	1.0		
Naphthalene	< 1.0	1.0		
Phenanthrene Pyrene	< 1.0 < 1.0	1.0 1.0		
Nitrobenzene-d5 (surrogate)	65%			
2-Fluorobiphenvl (surrogate)	52%			
p-Terphenyl-d14 (surrogate)	43%			
Analysis Date/Time:	6-26-23/12:29			
Analyst Initials	gid			
Date Extracted	6/23/23			
Initial Sample Volume	40 mL			
Final Volume	2.0 mL			

Client Name:	SES			
Project ID:	2023-0635			
Client Project Manager:	GLEN HOWARD			
ENVision Project Number:	2023-1278			
Analytical Method: Prep Method:	EPA 6010 EPA 3010A			
Client Sample ID: Envision Sample Number: Sample Matrix:	GP 8 23-12325 water	Sample Collection Date/Time: Sample Received Date/Time:	6/21/23 6/22/23	12:45 14:30
	Water			
<u>Compounds</u> Arsenic, total Cadmium, total Chromium, total Lead, total	Sample Results (ug/L) < 10 < 5 15 < 10	Reporting Limit (ug/L) 10 5 10 10	<u>Flags</u>	

Client Name:	SES			
Project ID:	2023-0635			
Client Project Manager:	GLEN HOWARD			
ENVision Project Number:	2023-1278			
Analytical Method: Prep Method: Analytical Batch:	EPA 8260 EPA 5030B 062723VW			
Client Sample ID: Envision Sample Number: Sample Matrix:	TRIP BLANK 23-12326 water	Sample Collection Date/Time: Sample Received Date/Time:	6/22/23	14:30
<u>Compounds</u>	Sample Results (ug/L)	Reporting Limit (ug/L)	<u>Flags</u>	
Acrolein	< 1	1		
Acrylonitrile	< 0.45	1	1	
Benzene	< 5	5	I	
Bromobenzene	< 5	5		
Bromochloromethane	< 5	5		
Bromodichloromethane	< 5	5		
Bromoform	< 5	5		
Bromomethane	< 5	5		
n-Butanol	< 50	50		
2-Butanone (MEK)	< 10	10		
n-Butvlbenzene	< 5	5		
sec-Butvlbenzene	< 5	5		
tert-Butylbenzene	< 5	5		
Carbon Disulfide	< 5	5		
Carbon Tetrachloride	< 5	5		
Chlorobenzene	< 5	5		
Chloroethane	< 5	5		
2-Chloroethylvinylether	< 50	50		
Chloroform	< 5	5		
Chloromethane	< 5	5		
2-Chlorotoluene	< 5	5		
4-Chlorotoluene	< 5	5		
1,2-Dibromo-3-chloropropane	< 1	1		
Dibromochloromethane	< 5	5		
1,2-Dibromoethane (EDB)	< 1	1		
Dibromomethane	< 5	5		
1,2-Dichlorobenzene	< 5	5		
1,3-Dichlorobenzene	< 5	5		
1,4-Dichlorobenzene	< 5	5		
trans-1,4-Dichloro-2-butene	< 1	1		
Dichlorodifluoromethane	< 5	5		

8260 continued			
<u>Compounds</u>	<u>Sample Results (ug/L)</u>	Reporting Limit (ug/L)	<u>Flags</u>
1,1-Dichloroethane	< 5	5	
1,2-Dichloroethane	< 5	5	
1,1-Dichloroethene	< 5	5	
cis-1,2-Dichloroethene	< 5	5	
trans-1,2-Dichloroethene	< 5	5	
1,2-Dichloropropane	< 5	5	
1.3-Dichloropropane	< 5	5	
2,2-Dichloropropane	< 5	5	
1,1-Dichloropropene	< 5	5	
1,3-Dichloropropene	< 4.1	4.1	
Ethvlbenzene	< 5	5	
Ethvl methacrvlate	< 100	100	
Hexachloro-1.3-butadiene	< 2.6	2.6	
n-Hexane	< 10	10	
2-Hexanone	< 10	10	
lodomethane	< 10	10	
Isopropylbenzene (Cumene)	< 5	5	
n-Isopropylionizone (ournency	< 5	5	
Methylene chloride	< 5	5	
4-Methyl-2-pentanone (MIBK)	< 10	10	
Methyl_tert_butyl_ether	< 5	5	
1 Methylnanhthalene	< 5	5	
2 Methylnaphthalene	< 5	5	
Nanhthalana	< 1	1	
n Bropylbonzono	< 1	5	
Styropo	< 5	5	
1 1 1 2 Totrachlaraothana	< 5	5	
1, 1, 1, 2- Tetrachloroethane	< 0.66	5	1
Tetrachlereethere	< 0.00		I
Tetrachioroethene	< 5	5	
	< 5	5	
	< 5	5	
1,2,4-1 richlorobenzene	< 5	5	
	< 5	5	
	< 5	5	
	< 5	5	
	< 5	5	
1,2,3-I richloropropane	< 1	1	
1,2,4-I rimethylbenzene	< 5	5	
1,3,5-I rimethylbenzene	< 5	5	
Vinyl acetate	< 10	10	
Vinyl chloride	< 2	2	
Xylene, M&P	< 5	5	
Xylene, 0rtho	< 5	5	
Xylene (Total)	< 10	10	
Dibromofluoromethane (surrogate)	97%		
1,2-Dichloroethane-d4 (surrogate)	104%		
Toluene-d8 (surrogate)	101%		
4-bromofluorobenzene (surrogate)	100%		
Analysis Date/Time:	6-27-23/11:53		
Analyst Initials	tjg		

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • FirstEnv.com

July 05, 2023

Ms. Cheryl Crum ENVISION LABORATORIES, INC. 1439 Sandlier Cir. W. Drive Indianapolis, IN 46239

Project ID: 2023-1278 First Environmental File ID: 23-5428 Date Received: June 27, 2023

Dear Ms. Cheryl Crum:

The above referenced project was analyzed as directed on the enclosed chain of custody record.

All Quality Control criteria as outlined in the methods and current IL ELAP/NELAP have been met unless otherwise noted. QA/QC documentation and raw data will remain on file for future reference. Our accreditation number is 100292 and our current certificate is number:

1002922023-10: effective 03/07/2023 through 02/28/2024.

I thank you for the opportunity to be of service to you and look forward to working with you again in the future. Should you have any questions regarding any of the enclosed analytical data or need additional information, please contact me at (630) 778-1200.

Sincerely,

Ryn Guh

Ryan Gerrick Project Manager

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • FirstEnv.com

Case Narrative

ENVISION LABORATORIES, INC.

Lab File ID: 23-5428

Project ID: 2023-1278

Date Received: June 27, 2023

All quality control criteria, as outlined in the methods, have been met except as noted below or on the following analytical report.

The results in this report apply to the samples in the following table:

Laboratory Sample ID	Client Sample Identifier	Date/Time Collected
23-5428-001	23-12322, GP 5	6/21/2023 11:00
23-5428-002	23-12322, GP 6	6/21/2023 12:45
23-5428-003	23-12322, GP 7	6/21/2023 11:47
23-5428-004	23-12322, GP 8	6/21/2023 12:45

Sample Batch Comments:

Sample acceptance criteria were met.

Method Comments		
Lab Number	Sample ID	Comments:
23-5428-001	23-12322, GP 5	<i>Oil & Grease</i> Sample matrix required method modification; result may be low-biased.
23-5428-002	23-12322, GP 6	<i>Oil & Grease</i> Sample matrix required method modification; result may be low-biased.
23-5428-003	23-12322, GP 7	<i>Oil & Grease</i> Sample matrix required method modification; result may be low-biased.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • FirstEnv.com

Case Narrative

ENVISION LABORATORIES, INC.

Lab File ID: 23-5428

Project ID: 2023-1278

Date Received: June 27, 2023

All quality control criteria, as outlined in the methods, have been met except as noted below or on the following analytical report.

The following is a definition of flags that may be used in this report:

Flag	Description	Flag	Description
А	Method holding time is 15 minutes from collection. Lab an	alysis	was performed as soon as possible.
В	Analyte was found in the method blank.	L	LCS recovery outside control limits.
<	Analyte not detected at or above the reporting limit.	М	MS recovery outside control limits; LCS acceptable.
С	Sample received in an improper container for this test.	Р	Chemical preservation pH adjusted in lab.
D	Surrogates diluted out; recovery not available.	Q	Result was determined by a GC/MS database search.
Е	Estimated result; concentration exceeds calibration range.	S	Analysis was subcontracted to another laboratory.
G	Surrogate recovery outside control limits.	Т	Result is less than three times the MDL value.
Н	Analysis or extraction holding time exceeded.	W	Reporting limit elevated due to sample matrix.
Ι	ICVS % rec outside 95-105% but within 90-110%		
J	Estimated result; concentration is less than routine RL but greater than MDL.	N	Analyte is not part of our NELAC accreditation or accreditation may not be available for this parameter.
RL	Routine Reporting Limit (Lowest amount that can be detected when routine weights/volumes are used without dilution.)	ND	Analyte was not detected using a library search routine; No calibration standard was analyzed.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • FirstEnv.com

Analyte		Result	R.L.	Units	Flags
Sample No:	23-5428-001		Date I	Reported:	07/05/23
Sample ID:	23-12322, GP 5		Date 1	Received:	06/27/23
Project ID:	2023-1278		Time	Collected:	11:00
Client:	ENVISION LABORATORIES, INC.		Date (Collected:	06/21/23

Analyte	Kesuit	N.L.	Units	riags
Oil & Grease	Method: 1664B 2010			
Analysis Date: 06/30/23				
Oil & Grease	< 6	3	mg/L	PW

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • FirstEnv.com

Oil & Grease	• 06/30/23	Method: 1664B	2010				
Analyte			Result	R.L.	Units	Flags	
Sample No:	23-5428-002			Date]	Reported:	07/05/23	
Sample ID:	23-12322, GP 6			Date 1	Received:	06/27/23	
Project ID:	2023-1278			Time	Collected:	12:45	
Client:	ENVISION LABORA	ATORIES, INC.		Date	Collected:	06/21/23	

Analysis Date:	06/30/23				
Dil & Grease		< 6	3	mg/L	W

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • FirstEnv.com

			010			
Analyte			Result	R.L.	Units	Flags
Sample No:	23-5428-003			Date 1	Reported:	07/05/23
Sample ID:	23-12322, GP 7			Date 1	Received:	06/27/23
Project ID:	2023-1278			Time	Collected:	11:47
Client:	ENVISION LABOR	RATORIES, INC.		Date (Collected:	06/21/23

					_	
Oil & Grease	Method:	1664B 2010				
Analysis Date: 06/	30/23					
Oil & Grease		< 6	3	mg/L	W	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • FirstEnv.com

Analyte		Result	R.L.	Units	Flags
Sample No:	23-5428-004		Date I	Reported:	07/05/23
Sample ID:	23-12322, GP 8		Date I	Received:	06/27/23
Project ID:	2023-1278		Time	Collected:	12:45
Client:	ENVISION LABORATORIES, INC.		Date (Collected:	06/21/23

Analyte	Result	K.L.	Units	Flags
Oil & Grease	Method: 1664B 2010			
Analysis Date: 06/30/23				
Oil & Grease	< 3	3	mg/L	Т

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • FirstEnv.com

Quality Control Summary

Client: Project ID:	ENVISION LABOR 2023-1278	ATORIES, INC.			Lab File ID:	23-5428	
QC Lab#	Time QC Code	Parameter	Reported Result	Units	QC Result	%R Limits Low High	RPD Limit
Parameter:	Oil & Grease	Analytical Method:	1664B 2010	Ana	alytical WS #: 2334	428 Analysis Date	: 6/30/2023
LCS813617	LCS	TPH (SGT-HEM)	16	mg/L	%R: 78	64 - 132	
LCS818860	LCS	Oil & Grease	40	mg/L	%R: 99	78 - 114	
LCS818865	LCS	Oil & Grease (polar)	24	mg/L	%R: 120	64 - 132	
LCSD818861	LCSD	Oil & Grease	42	mg/L	%R: 104	78 - 114	
LCSD818863	LCSD	TPH (SGT-HEM)	16	mg/L	%R: 81	64 - 132	
LCSD818866	LCSD	Oil & Grease (polar)	25	mg/L	%R: 127	64 - 132	
PB818862	PB	Oil & Grease	< 3	mg/L	0	-	
PB818864	PB	TPH (SGT-HEM)	< 3	mg/L	0	-	
PB818867	PB	Oil & Grease (polar)	< 3	mg/L	0	-	

* The QC indicator is outside control limits. %R = percent recovery; RPD = Relative percent difference CB = Calibration Blank; CCVS = Continuing Calibration Verification Standard; MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Spike; SURR = Surrogate Spiking Compound; PB = Procedure Blank; BLK = Method Blank; D = QCI diluted out.

Page 74 of 110

																								 ý.
	LISA DAULTON	RELINQUISHED BY:				23-12325 GP 8	23-12324 GP 7	23-12323 GP 6	23-12322 GP 5	Sample ID		Std (5 bus. Days)	1-day 2-day 3-day	Desired TAT: (Please Circle one)	e-mail: SEE ABOVE	Phone: SEE ABOVE	Report To: CHERYL CRUM		SEE ABOVE	Report Address:	Client: ENVision Labs	ENVision Laboratories, Inc. [14		
						WT	WT	WT	WT	Matrix			Level II	QA/QC Re	P.O. #:	Sampler:	Lab contac		Project Nam		Invoice Add	H39 Sadlier Circle V	CHATN	
	ulaula3	DATE				6/21/23	6/21/23	6/21/23	6/21/23	Date	Coll.		Level III Le	quired: (Circle O			t:	2023-1278	ne:		ress: SEE ABOVE	Vest Drive, In		
	12.00	TIME				12:45	11:47	12:45	11:00	Time	Coll.		vel IV	ne)								dianapolis	TOD	
(1	RECEIVED BY				×	×	×	×			OIL &	GRE	ASE						REQUESTE		s, IN 46239] Phc	V RECOR	
	1	5								HC HN H2 Na Oth	1 03 504 0H 1er									D PARAMET		ne: 317-351-863	J	
	2) Jelech	DATE T.								ENVision San	ne	5035 samples receives collection? Yes Ne	Method 5035 collection	pH Checked? Yes	Vials free of head	ENVision provided	Custody Seal?	Samples Intact? 4	Samples on ice? 4	Cooler Temp: λ.	Sample Integrity	32 Fax: 317-351		
	100	IME				-005	5a0 -	-09-	23-5428-001	nple ID		within 48rhs of	used? YES NO	No D	space? Yes No N/A	bottles? (A No	S No	No No	No No	° °	, Fa	-8639		

Page 75 of 110

05-Jul-2023

Cheryl Crum ENVision Laboratories, Inc 1439 Sadlier Circle West Dr Indianapolis, IN 46239

Re: 2023-1278

Work Order: 23062465

Dear Cheryl,

ALS Environmental received 11 samples on 27-Jun-2023 10:00 AM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental - Holland and for only the analyses requested.

Sample results are compliant with industry accepted practices and Quality Control results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 21.

If you have any questions regarding this report, please feel free to contact me:

ADDRESS: 3352 128th Avenue, Holland, MI, USA PHONE: +1 (616) 399-6070 FAX: +1 (616) 399-6185

Sincerely,

Cook New

Electronically approved by: Chelsey Cook

Chelsey Cook Project Manager

Report of Laboratory Analysis

Certificate No: IN: C-MI-08 ALS GROUP USA, CORP Part of the ALS Laboratory Group A Campbell Brothers Limited Company

ALS Group, USA

Date: 05-Jul-23

D roinst: 2022 1278	Froject: Work Order:	2023-1278
Chefft: Envision Laboratories, in	Project:	2023-1278

Work Order Sample Summary

Lab Samp ID	<u>Client Sample ID</u>	<u>Matrix</u>	Tag Number	Collection Date	Date Received	Hold
23062465-01	23-12311 GP1 28-30	Soil		6/20/2023 10:15	6/27/2023 10:00	
23062465-02	23-12312 GP2 28-30	Soil		6/20/2023 11:40	6/27/2023 10:00	
23062465-03	23-12315 GP5 28-30	Soil		6/20/2023 14:28	6/27/2023 10:00	
23062465-04	23-12316 GP6 28-30	Soil		6/21/2023 09:32	6/27/2023 10:00	
23062465-05	23-12317 GP7 28-30	Soil		6/21/2023 10:13	6/27/2023 10:00	
23062465-06	23-12318 GP1	Water		6/21/2023 13:20	6/27/2023 10:00	
23062465-07	23-12319 GP2	Water		6/21/2023 13:10	6/27/2023 10:00	
23062465-08	23-12322 GP5	Water		6/21/2023 11:00	6/27/2023 10:00	
23062465-09	23-12323 GP6	Water		6/21/2023 12:45	6/27/2023 10:00	
23062465-10	23-12324 GP7	Water		6/21/2023 11:47	6/27/2023 10:00	
23062465-11	23-12325 GP8	Water		6/21/2023 12:45	6/27/2023 10:00	

Date: 05-Jul-23

ALS Group, USA

-

Client:	ENVision Laboratories, Inc	QUALIFIERS, ACRONYMS, UNITS
Project:	2023-1278	
WorkOrder:	23062465	
Qualifier	Description	
-----------	---	
*	Value exceeds Regulatory Limit	
**	Estimated Value	
а	Analyte is non-accredited	
В	Analyte detected in the associated Method Blank above the Reporting Limit	
Е	Value above quantitation range	
Н	Analyzed outside of Holding Time	
Hr	BOD/CBOD - Sample was reset outside Hold Time, value should be considered estimated.	
J	Analyte is present at an estimated concentration between the MDL and Report Limit	
n	Analyte accreditation is not offered	
ND	Not Detected at the Reporting Limit	
D	Sample amount is > 4 times amount spiked	
P	Buar Column results percent difference $> 40\%$	
K S	Snike Recovery outside laboratory control limits	
U	Analyzed but not detected above the MDL	
Х	Analyte was detected in the Method Blank between the MDL and Reporting Limit, sample results may exhibit background or reagent contamination at the observed level.	
Acronym	Description	
DUP	Method Duplicate	
LCS	Laboratory Control Sample	
LCSD	Laboratory Control Sample Duplicate	
LOD	Limit of Detection (see MDL)	
LOQ	Limit of Quantitation (see PQL)	
MBLK	Method Blank	
MDL	Method Detection Limit	
MS	Matrix Spike	
MSD	Matrix Spike Duplicate	
PQL	Practical Quantitation Limit	
RPD	Relative Percent Difference	
TDL	Target Detection Limit	
TNTC	Too Numerous To Count	
А	APHA Standard Methods	
D	ASTM	
Е	EPA	

SW-846 Update III **Units Reported** Description

SW

% of sample Percent of Sample	nus nupor teu	Description	
70 of sample i creent of sample	% of sample	Percent of Sample	

mg/Kg-dry	Milligrams per Kilogram Dry Weight
mg/L	Milligrams per Liter

Client:	ENVision Laboratories, Inc	
Project:	2023-1278	Case Narrative
Work Order:	23062465	

Samples for the above noted Work Order were received on 06/27/2023. The attached "Sample Receipt Checklist" documents the status of custody seals, container integrity, preservation, and temperature compliance.

Samples were analyzed according to the analytical methodology previously transmitted in the "Work Order Acknowledgement". Methodologies are also documented in the "Analytical Result" section for each sample. Quality control results are listed in the "QC Report" section. Sample association for the reported quality control is located at the end of each batch summary. If applicable, results are appropriately qualified in the Analytical Result and QC Report sections. The "Qualifiers" section documents the various qualifiers, units, and acronyms utilized in reporting. A copy of the laboratory's scope of accreditation is available upon request.

With the following exceptions, all sample analyses achieved analytical criteria.

Extractable Organics: No deviations or anomalies were noted.

Wet Chemistry: No deviations or anomalies were noted.

-	<i>,</i>						
Client:	ENVision Laboratories,	Inc					
Project:	2023-1278				Wor	k Order: 23062465	
Sample ID:	23-12311 GP1 28-30					Lab ID: 23062465-	01
Collection Date:	6/20/2023 10:15 AM					Matrix: SOIL	
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
ORGANIC COMP	OUNDS BY GC-FID			SW8015	A Prep	o: SW8015C 6/29/23 17:00	Analyst: KYM
Ethylene glycol		N	D	5.2	mg/Kg-dry	1	6/30/2023 04:47 PM
MOISTURE				SW35500	2		Analyst: SGH
Moisture		4.	4	0.10	% of sampl	e 1	6/30/2023 03:28 PM

MOISTURE

Moisture

Cliente	ENVision Laboratorias L	20						
Chent:	EN VISION Laboratories, I	lic						
Project:	2023-1278				,	Work Order:	23062465	
Sample ID:	23-12312 GP2 28-30					Lab ID:	23062465-02	2
Collection Date:	6/20/2023 11:40 AM					Matrix:	SOIL	
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	l	Date Analyzed
ORGANIC COMP Ethylene glycol	OUNDS BY GC-FID	NI	D	SW8015 5.2	M mg/Kg-	Prep: SW8015C dry 1	6/29/23 17:00 6	Analyst: KYM 5/30/2023 04:56 PM

 SW3550C
 Analyst:
 SGH

 5.4
 0.10 % of sample
 1
 6/30/2023 03:28 PM

-							
Client:	ENVision Laboratories,	Inc					
Project:	2023-1278				Wo	rk Order: 23062465	
Sample ID:	23-12315 GP5 28-30					Lab ID: 23062465-	-03
Collection Date:	6/20/2023 02:28 PM					Matrix: SOIL	
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
ORGANIC COMP	OUNDS BY GC-FID			SW8015	A Pre	p: SW8015C 6/29/23 17:00	Analyst: KYM
Ethylene glycol		N	D	5.0	mg/Kg-dry	1	6/30/2023 05:04 PM
MOISTURE				SW35500	2		Analyst: SGH
Moisture		2.	4	0.10	% of samp	le 1	6/30/2023 03:28 PM

Client:	ENVision Laboratories	nc					
Project:	2023-1278	iii c			Work	Order: 23062465	
Sample ID:	23-12316 GP6 28-30]	Lab ID: 23062465-	-04
Collection Date:	6/21/2023 09:32 AM					Matrix: SOIL	
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
ORGANIC COMP Ethylene glycol	POUNDS BY GC-FID	NE)	SW8015N 5.1	M Prep: mg/Kg-dry	SW8015C 6/29/23 17:00 1	Analyst: KYM 6/30/2023 05:13 PM
MOISTURE				SW35500	;		Analyst: SGH
Moisture		4.7	7	0.10	% of sample	1	6/30/2023 03:28 PM

Client:	ENVision Laboratories,	Inc					
Project:	2023-1278				Wo	rk Order: 23062465	
Sample ID:	23-12317 GP7 28-30					Lab ID: 23062465-	.05
Collection Date:	6/21/2023 10:13 AM					Matrix: SOIL	
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
ORGANIC COMP Ethylene glycol	OUNDS BY GC-FID	N	D	SW8015M 5.2	M Pre mg/Kg-dry	p: SW8015C 6/29/23 17:00 1	Analyst: KYM 6/30/2023 05:22 PM
MOISTURE				SW35500	c		Analyst: SGH
Moisture		5.	8	0.10	% of samp	le 1	6/30/2023 03:28 PM

Collection Date:	6/21/2023 01:20 PM			Report		Matrix:	WATER	
Analyses		Result	Qual	Limit	Units	Factor		Date Analyzed

Client:	ENVision Laboratories, 1	nc						
Project:	2023-1278				W	ork Order:	23062465	
Sample ID:	23-12319 GP2					Lab ID:	23062465-07	
Collection Date:	6/21/2023 01:10 PM					Matrix:	WATER	
Analyses		Result	Qual	Report Limit	Units	Dilution Factor		Date Analyzed
ORGANIC COMP Ethylene glycol	OUNDS BY GC-FID	N	D	SW8015 5.0	M mg/L	1	6/	Analyst: KYM 30/2023 02:01 PM

Client:	ENVision Laboratories,	Inc						
Project:	2023-1278				W	ork Order:	23062465	
Sample ID:	23-12322 GP5					Lab ID:	23062465-08	
Collection Date:	6/21/2023 11:00 AM					Matrix:	WATER	
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	l	Date Analyzed
ORGANIC COMP Ethylene glycol	OUNDS BY GC-FID	Ν	D	SW8015	M mg/L	1	6/	Analyst: KYM 30/2023 02:09 PM

Client:	ENVision Laboratories, Ir	nc						
Project:	2023-1278				W	ork Order:	23062465	
Sample ID:	23-12323 GP6					Lab ID:	23062465-09	
Collection Date:	6/21/2023 12:45 PM					Matrix:	WATER	
Analyses		Result	Qual	Report Limit	Units	Dilution Factor		Date Analyzed
ORGANIC COMP Ethylene glycol	OUNDS BY GC-FID	N	D	SW8015 5.0	M mg/L	1	6/3	Analyst: KYM 30/2023 02:18 PM

Client:	ENVision Laboratories, 1	Inc						
Project:	2023-1278				W	ork Order:	23062465	
Sample ID:	23-12324 GP7					Lab ID:	23062465-10	
Collection Date:	6/21/2023 11:47 AM					Matrix:	WATER	
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	l	Date Analyzed
ORGANIC COMP Ethylene glycol	OUNDS BY GC-FID	N	D	SW8015 5.0	M mg/L	1	6/-	Analyst: KYM 30/2023 02:27 PM

Client:	ENVision Laboratories, I	nc						
Project:	2023-1278				W	ork Order:	23062465	
Sample ID:	23-12325 GP8					Lab ID:	23062465-11	
Collection Date:	6/21/2023 12:45 PM					Matrix:	WATER	
Analyses		Result	Qual	Report Limit	Units	Dilution Factor		Date Analyzed
ORGANIC COMP Ethylene glycol	OUNDS BY GC-FID	Ν	D	SW8015 5.0	M mg/L	1	6/:	Analyst: KYM 30/2023 03:19 PM

Client:ENVision Laboratories, IncWork Order:23062465Project:2023-1278

Date: 05-Jul-23

QC BATCH REPORT

Batch ID: 219162	Instrument ID GC11 Method: SW8015M											
MBLK	Sample ID: MBLK-2191	62-219162				ι	Jnits: mg/l	Kg	Analys	is Date: 6/30	/2023 04:	38 PM
Client ID:		Run ID:	GC11_	230630A		Se	qNo: 972 4	4630	Prep Date: 6/29/2023		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Ethylene glycol		ND	5.0									
LCS	Sample ID: LCS-21916	2-219162				ι	Jnits: mg/l	Kg	Analys	is Date: 6/30	/2023 05:	31 PM
Client ID:		Run ID:	GC11_	230630A		Se	qNo: 972 4	4636	Prep Date: 6/2	29/2023	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Ethylene glycol	hylene glycol 542.6			500		0	109	40-150		0		
MS	Sample ID: 23062465-01A MS					ι	Jnits: mg/l	Kg	Analys	is Date: 6/30	/2023 05:	48 PM
Client ID: 23-12311	GP1 28-30	Run ID:	GC11_	230630A		SeqNo: 9724638		Prep Date: 6/29/2023		DF: 1		
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Ethylene glycol		612.2	5.0	496		0	123	40-150		0		
MSD	Sample ID: 23062465-0	1A MSD				ι	Jnits: mg/l	Kg	Analys	is Date: 6/30)/2023 05:	57 PM
Client ID: 23-12311	GP1 28-30	Run ID:	GC11_	230630A		Se	qNo: 972 4	4639	Prep Date: 6/2	29/2023	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Ethylene glycol		552.7	5.0	497.2		0	111	40-150	612.	2 10.2	30	
The following samples were analyzed in this batch:		s batch:	23 23	3062465-01 <i>F</i> 3062465-04 <i>F</i>	A 23 A 23	3062 3062	465-02A 465-05A	23	062465-03A			

QC BATCH REPORT

Batch ID: R375674 Instrument ID GC11 Method: SW8015M

MBLK	Sample ID: MBLKW1-2	230630-R37	5674			ι	Jnits: mg/l	L	Analy	sis Date: 6/30	/2023 01:	43 PM
Client ID:		Run ID:	GC11_	_230630A		Se	qNo: 972 4	581	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Ethylene glycol		ND	5.0									
LCS	Sample ID: LCSW1-23	0630-R3756	74			ι	Jnits: mg/l	L	Analy	/2023 02:	36 PM	
Client ID:		Run ID:	GC11_	_230630A		Se	qNo: 972 4	1587	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Ethylene glycol		596.2	5.0	500		0	119	81-128		0		
MS Sample ID: 23062465-06A MS					ι	Jnits: mg/l	L	Analy	sis Date: 6/30	/2023 03:	46 PM	
Client ID: 23-12318	GP1	Run ID:	GC11_	_230630A		Se	qNo: 972 4	1592	Prep Date:		DF: 2	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Ethylene glycol		1170	10	1000		0	117	81-128		0		
MSD	Sample ID: 23062465-0	06A MSD				ι	Jnits: mg/l	L	Analy	sis Date: 6/30	/2023 03:	54 PM
Client ID: 23-12318	GP1	Run ID:	GC11_	_230630A		Se	qNo: 972 4	1593	Prep Date:		DF: 2	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Ethylene glycol		1204	10	1000		0	120	81-128	11	70 2.89	30	
The following samp	les were analyzed in th	is batch:	2	23062465-06A 23062465-09A	23	3062 3062	465-07A 465-10A	23	062465-08A 062465-11A			

QC BATCH REPORT

Batch ID: R375719 Instrument ID MOIST Method: SW3550C

MBLK	Sample ID: WBLKS	-R375719				U	Inits: % o f	f sample	Analysi	s Date: 6/30)/2023 03:	28 PM
Client ID:		Run ID	MOIST	_230630D		Se	qNo: 972	6255	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture		ND	0.10									
LCS	Sample ID: LCS-R3	75719				U	Inits: % o f	f sample	Analysi)/2023 03:	28 PM	
Client ID:		Run ID	MOIST	_230630D		Se	qNo: 972	6254	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture		100	0.10	100		0	100	98-102	C)		
DUP	Sample ID: 2306244	46-03B DUP				U	Inits: % o f	f sample	Analysi	s Date: 6/30)/2023 03:	28 PM
Client ID:		Run ID	MOIST	_230630D		Se	qNo: 972	6247	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture		6.3	0.10	0		0	0	0-0	6.11	3.06	10	
DUP	Sample ID: 230624	65-01A DUP				U	Inits: % of	f sample	Analysi	s Date: 6/30)/2023 03:	28 PM
Client ID: 23-123	11 GP1 28-30	Run ID	MOIST	_230630D		Se	qNo: 972	6249	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture		4.19	0.10	0		0	0	0-0	4.45	6.02	10	
The following sa	mples were analyzed in	this batch:	2	3062465-01A 3062465-04A	23	3062 3062	465-02A 465-05A	23	062465-03A			

CHAIN OF CUSTODY RECORD

ENVision Laboratories, Inc. [1439 Sadlier Circle West Drive, Indianapolis, IN 46239] Phone: 317-351-8632 Fax: 317-351-8639

Client: ENVision Labs Invoice Address: SEE ABOVE						-							Sample Int	egrity: 1R3	
Report Address:					RE	QUE	STE	DF	PA	RA	ME	T	Cooler Temp	: <u>2.6</u> ℃	
SEE ABOV	/E	Project Name:						1		1		N.	Samples on	ice? Yes No	
			2023-1278										Samples Inta	act? Yes No	
Report To: CHERYL CRUM		Lab contact:]								Custody Sea	l? Yes No	
Phone: SEE ABOVE		Sampler:			_								ENVision provided bottles? Yes		
e-mail: SEE ABOVE		P.O. #:			1 8								Vials free of	head space? Yes No N/A	
Desired TAT: (Please Circle on	Desired TAT: (Please Circle one) QA/QC Requir			ne)	ษี	μ							pH Checked	? Yes No N/A	
1-day 2-day 3-day	-day 2-day 3-day Level II		evel III Le	vel IV	U N N	1013							Method 5035 co	llection used? YES NO	
Std (5 bus. Days)					Ϋ́Γ	lois							5035 camples re	aceluad within 49rbs of	
				· E	N %							collection? Yes	No		
Sample ID		Matrix	Coll. Date	Coll. Time				덕	EONH	12504	other	Vone	ENVision	Sample ID	
23-12311	GP 1 28-30	SL	6/20/23	10:15	X	Х									
23-12312	GP 2 28-30	SL	6/20/23	11:40	X	х		-	- 3		÷.	10			
23-12315	GP 5 28-30	SL	6/20/23	14:28	X	Х						2	230624	-65	
23-12316	GP 6 28-30	SL	6/21/23	9:32	х	х						ENV	/ISION: ENVision Labor	atories, inc	
23-12317	GP 7 28-30	SL	6/21/23	10:13	X	Х									
23-12318	GP 1	WT	6/21/23	13:20	Х										
23-12319	GP 2	WT	6/21/23	13:10	Х		-								
23-12322	GP 5	WT	6/21/23	11:00	Х					!					
23-12323	GP 6	WT	6/21/23	12:45	Х										
23-12324	GP 7	WT	6/21/23	11:47	Х										
23-12325	GP 8	VVT	6/21/23	12:45	Х										
		_							+	+	-	-			
										+	-	-			
RELINQUISHED BY:			DATE	TIME	RECE	IVED	BY:			_		_	DATE	TIME	
LISA DAULTON			6/26/23	1200		ElP.	S		0	1			1 .		
	UPS		62723	1000	C	D	2	5	Z	A			627/23	1000	

ALS Group, USA Holland, Michigan

Sample Receipt Checklist

Client Name: ENVISION		Date/Time F	Received:	<u>27-Jun-23</u>	10:00
Work Order: 23062465		Received by	/ :	<u>DS</u>	
Checklist completed by Diane Shaw	28-Jun-23	Reviewed by:	Chelsey	Cook	28-Jun-23
Matrices: <u>Soil, Water</u> Carrier name: <u>UPS</u>	240		ooigi lataro		
Shipping container/cooler in good condition?	Yes 🗸	No	Not Prese	ent 🗌	
Custody seals intact on shipping container/cooler?	Yes	No 🗌	Not Prese	ent 🗹	
Custody seals intact on sample bottles?	Yes	No 🗌	Not Prese	ent 🗹	
Chain of custody present?	Yes 🗸	No 🗌			
Chain of custody signed when relinquished and received?	Yes 🗸	No 🗌			
Chain of custody agrees with sample labels?	Yes 🗸	No			
Samples in proper container/bottle?	Yes 🗸	No 🗌			
Sample containers intact?	Yes 🗸	No 🗌			
Sufficient sample volume for indicated test?	Yes 🗸	No 🗌			
All samples received within holding time?	Yes 🗹	No			
Container/Temp Blank temperature in compliance?	Yes 🗸	No 🗌			
Sample(s) received on ice? Temperature(s)/Thermometer(s):	Yes ⊻ 2.6/3.6 c	No	IR3		
Cooler(s)/Kit(s):					
Date/Time sample(s) sent to storage:	6/28/2023	8:49:49 AM			_
Water - VOA vials have zero headspace?	Yes 🗸	No	No VOA vials	submitted	
Water - pH acceptable upon receipt?	Yes	No	N/A		
pH adjusted? pH adjusted by:	Yes 🗌	No	N/A		

Login Notes:

Client Contacted:	Date Contacted:	Person Contacted:	
Contacted By:	Regarding:		
Comments:			
CorrectiveAction:			SRC Page 1 of 1
			Page 96 of 110

EPA 8260 Quality Control Data

ENVision Batch Number:

062523VS

Method Blank (MB):	MB Results (ug/kg)	<u>Rep Lim (ug/kg)</u>	Flag
Acetone	< 100	100	
Acrolein	< 0.17	1	1
Acrylonitrile	< 2	2	
Benzene	< 5	5	
Bromobenzene	< 5	5	
Bromochloromethane	< 5	5	
Bromodichloromethane	< 5	5	
Bromoform	< 5	5	
Bromomethane	< 5	5	
n-Butanol	< 50	50	
2-Butanone (MEK)	< 10	10	
n-Butylbenzene	< 5	5	
sec-Butylbenzene	< 5	5	
tert-Butylbenzene	< 5	5	
Carbon Disulfide	< 5	5	
Carbon Tetrachloride	< 5	5	
Chlorobenzene	< 5	5	
Chloroethane	< 5	5	
2-Chloroethylvinylether	< 50	50	
Chloroform	< 5	5	
Chloromethane	< 5	5	
2-Chlorotoluene	< 5	5	
4-Chlorotoluene	< 5	5	
1,2-Dibromo-3-chloropropane	< 1.7	1.7	
Dibromochloromethane	< 5	5	
1,2-Dibromoethane (EDB)	< 0.28	1	1
Dibromomethane	< 5	5	
1,2-Dichlorobenzene	< 5	5	
1,3-Dichlorobenzene	< 5	5	
1,4-Dichlorobenzene	< 5	5	
trans-1,4-Dichloro-2-butene	< 5	5	
Dichlorodifluoromethane	< 5	5	
1,1-Dichloroethane	< 5	5	
1,2-Dichloroethane	< 5	5	
1,1-Dichloroethene	< 5	5	
cis-1,2-Dichloroethene	< 5	5	
trans-1,2-Dichloroethene	< 5	5	
1,2-Dichloropropane	< 5	5	
1,3-Dichloropropane	< 5	5	
2,2-Dichloropropane	< 5	5	
1,1-Dichloropropene	< 5	5	
1,3-Dichloropropene	< 5	5	
Ethylbenzene	< 5	5	
Ethyl methacrylate	< 100	100	

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639 www.envisionlaboratories.com

<u>Flag</u>

8260 QC Continued		
<u>Method Blank (MB)</u>	MB Results (ug/kg)	<u>Rep Lim (ug/kg)</u>
Hexachloro-1,3-butadiene	< 5	5
2-Hexanone	< 10	10
n-Hexane	< 10	10
lodomethane	< 10	10
Isopropylbenzene (Cumene)	< 5	5
p-Isopropyltoluene	< 5	5
Methylene chloride	< 20	20
4-Methyl-2-pentanone (MIBK)	< 10	10
Methyl-tert-butyl-ether	< 5	5
1-Methylnaphthalene	< 5	5
2-Methylnaphthalene	< 5	5
Naphthalene	< 5	5
n-Propylbenzene	< 5	5
Styrene	< 5	5
1,1,1,2-Tetrachloroethane	< 5	5
1,1,2,2-Tetrachloroethane	< 5	5
Tetrachloroethene	< 5	5
Toluene	< 5	5
1,2,3-Trichlorobenzene	< 5	5
1,2,4-Trichlorobenzene	< 5	5
1,1,1-Trichloroethane	< 5	5
1,1,2-Trichloroethane	< 5	5
Trichloroethene	< 5	5
Trichlorofluoromethane	< 5	5
1,2,3-Trichloropropane	< 5	5
1,2,4-Trimethylbenzene	< 5	5
1,3,5-Trimethylbenzene	< 5	5
Vinyl acetate	< 10	10
Vinyl chloride	< 2	2
Xylene, M&P	< 5	5
Xylene, 0rtho	< 5	5
Xylenes, Total	< 10	10
Dibromofluoromethane (surrogate)	95%	
1,2-Dichloroethane-d4 (surrogate)	93%	
Toluene-d8 (surrogate)	103%	
4-bromofluorobenzene (surrogate)	94%	
Analysis Date/Time:	6-25-23/18:38	
Analyst Initials	tjg	

8260 QC Continued...

LCS/LCSD:	LCS Results (ug/kg)	LCS/LCSD Conc. (ug/kg)	LCSD Result (ug/kg)	LCS Rec.	LCSD Rec.	% D	Flag
Vinyl Chloride	48.0	50	46.3	96%	93%	3.6	
1,1-Dichloroethene	43.6	50	49.0	87%	98%	11.7	
trans-1,2-Dichloroethene	44.0	50	44.4	88%	89%	0.9	
Methyl-tert-butyl ether	48.4	50	46.0	97%	92%	5.1	
1,1-Dichloroethane	45.2	50	49.5	90%	99%	9.1	
cis-1,2-Dichloroethene	47.2	50	52.8	94%	106%	11.2	
Chloroform	50.8	50	50.5	102%	101%	0.6	
1,1,1-Trichloroethane	52.3	50	51.0	105%	102%	2.5	
Benzene	51.8	50	50.7	104%	101%	2.1	
Trichloroethene	54.1	50	50.2	108%	100%	7.5	
Toluene	49.8	50	52.3	100%	105%	4.9	
1,1,1,2-Tetrachloroethane	54.0	50	52.7	108%	105%	2.4	
Chlorobenzene	51.1	50	50.9	102%	102%	0.4	
Ethylbenzene	48.0	50	48.4	96%	97%	0.8	
o-Xylene	53.6	50	56.4	107%	113%	5.1	
n-Propylbenzene	53.7	50	53.8	107%	108%	0.2	
Dibromofluoromethane (surrogate)	108%		114%				
1,2-Dichloroethane-d4 (surrogate)	108%		113%				
Toluene-d8 (surrogate)	107%		107%				
4-bromofluorobenzene (surrogate)	109%		102%				
Analysis Date/Time:	6-25-23/17:51		6-25-23/18:06				
Analyst Initials	tjg		tjg				

EPA 8270 PAH Quality Control Data

ENVision Batch Number:	062723PS2		
Method Blank (MB):	Method Blank Results (mg/kg)	<u>Reporting Limit</u> (mg/kg)	Flag
Acenaphthene	< 0.33	0.33	
Acenaphthylene	< 0.33	0.33	
Anthracene	< 0.33	0.33	
Benzo(a)anthracene	< 0.33	0.33	
Benzo(a)pyrene	< 0.067	0.067	
Benzo(b)fluoranthene	< 0.33	0.33	
Benzo(g,h,i)perylene	< 0.33	0.33	
Benzo(k)fluoranthene	< 0.33	0.33	
Chrysene	< 0.33	0.33	
Dibenzo(a,h)anthracene	< 0.067	0.067	
Fluoranthene	< 0.33	0.33	
Fluorene	< 0.33	0.33	
Indeno(1,2,3-cd)pyrene	< 0.33	0.33	
1-methylnaphthalene	< 0.33	0.33	
2-methylnaphthalene	< 0.33	0.33	
Naphthalene	< 0.067	0.067	
Phenanthrene	< 0.30	0.30	
Pyrene	< 0.33	0.33	
Nitrobenzene-d5 (surrogate)	82%		
2-Fluorobiphenyl (surrogate)	81%		
p-Terphenyl-d14 (surrogate)	109%		
Analysis Date/Time	06-28-23/08:14		
Analyst Initials	gjd		
Date Extracted	6/27/2023		
Initial Sample Weight:	30 g		
Final Volume	1.0 mL		

		LCS		LCS	LCSD		
LCS/LCSD:	LCS Results	Concentration	LCSD Results	Recovery	Recovery	<u>RPD</u>	Flag
Naphthalene	26.3	50	25.7	53%	51%	2.2%	
2-methylnaphthalene	27.1	50	27.8	54%	56%	2.4%	
1-methylnaphthalene	26.5	50	26.4	53%	53%	0.6%	
Acenaphthylene	26.6	50	27.4	53%	55%	3.1%	
Acenaphthene	28.0	50	27.5	56%	55%	2.0%	
Fluorene	27.9	50	28.4	56%	57%	1.7%	
Phenanthrene	27.7	50	28.3	55%	57%	2.1%	
Anthracene	26.9	50	26.2	54%	52%	2.4%	
Fluoranthene	28.0	50	27.5	56%	55%	1.7%	
Pyrene	34.0	50	34.3	68%	69%	0.7%	
Benzo(a)anthracene	26.8	50	26.6	54%	53%	0.6%	
Chrysene	27.6	50	27.3	55%	55%	1.1%	
Benzo(b)fluoranthene	27.9	50	28.5	56%	57%	2.2%	
Benzo(k)fluoranthene	28.1	50	30.6	56%	61%	8.6%	
Benzo(a)pyrene	27.3	50	28.6	55%	57%	4.8%	
Indeno(1,2,3-cd)pyrene	29.7	50	32.3	59%	65%	8.4%	
Dibenzo(a,h)anthracene	26.9	50	28.3	54%	57%	5.1%	
Benzo(g,h,i)perylene	30.8	50	32.4	62%	65%	5.1%	
Nitrobenzene-d5 (surrogate)	79%		75%				
2-Fluorobiphenyl (surrogate)	75%		77%				
p-Terphenyl-d14 (surrogate)	92%		97%				
Analysis Date/Time:	06-28-23/08:40		06-28-23/09:06				
Analyst Initials:	gjd		gjd				
Date Extracted:	6/27/2023		6/27/2023				
Initial Sample Weight:	30 g		30 g				
Final Volume:	1.0 mL		1.0 mL				
				_	-		

EPA 6010B Metals Quality Control Data

ENVision Batch Number:	062923icp			
Method Blank (MB):	MB Results (mg/kg)	<u>Rep Lim (mg/kg)</u>	Flag	
Arsenic	< 2	2		
Cadmium	< 2	2		
Chromium	< 2	2		
Lead	< 2	2		
Analysis Date/Time:	6-29-23/12:34			
Analyst Initials:	gjd			
Laboratory Control Standard:	LCS Results(ppm)	LCS Conc(ppm)	<u>% Rec</u>	Flag
Arsenic	0.51	0.50	102%	
Cadmium	0.49	0.50	98%	
Chromium	0.48	0.50	96%	
Lead	0.52	0.50	104%	
Analysis Date/Time:	6-29-23/12:32			
Analyst Initials:	gjd			

ENVision Batch Number:

EPA 8260 Quality Control Data

062623BVW

Method Blank (MB):	MB Results (ug/L)	<u>Rep Lim (ug/L)</u>	Flag
Acetone	< 100	100	
Acrolein	< 1	1	
Acrylonitrile	< 0.45	1	1
Benzene	< 5	5	
Bromobenzene	< 5	5	
Bromochloromethane	< 5	5	
Bromodichloromethane	< 5	5	
Bromoform	< 5	5	
Bromomethane	< 5	5	
n-Butanol	< 50	50	
2-Butanone (MEK)	< 10	10	
n-Butylbenzene	< 5	5	
sec-Butylbenzene	< 5	5	
tert-Butylbenzene	< 5	5	
Carbon Disulfide	< 5	5	
Carbon Tetrachloride	< 5	5	
Chlorobenzene	< 5	5	
Chloroethane	< 5	5	
2-Chloroethylvinylether	< 50	50	
Chloroform	< 5	5	
Chloromethane	< 5	5	
2-Chlorotoluene	< 5	5	
4-Chlorotoluene	< 5	5	
1,2-Dibromo-3-chloropropane	< 1	1	
Dibromochloromethane	< 5	5	
1,2-Dibromoethane (EDB)	< 1	1	
Dibromomethane	< 5	5	
1,2-Dichlorobenzene	< 5	5	
1,3-Dichlorobenzene	< 5	5	
1,4-Dichlorobenzene	< 5	5	
trans-1,4-Dichloro-2-butene	< 1	1	
Dichlorodifluoromethane	< 5	5	
1,1-Dichloroethane	< 5	5	
1,2-Dichloroethane	< 5	5	
1,1-Dichloroethene	< 5	5	
cis-1,2-Dichloroethene	< 5	5	
trans-1,2-Dichloroethene	< 5	5	
1,2-Dichloropropane	< 5	5	
1,3-Dichloropropane	< 5	5	
2,2-Dichloropropane	< 5	5	
1.1-Dichloropropene	< 5	5	
1,3-Dichloropropene	< 4.1	4.1	
Ethylbenzene	< 5	5	
Ethyl methacrylate	< 100	100	
	100		

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639 www.envisionlaboratories.com

8260 QC Continued			
Method Blank (MB):	MB Results (ug/L)	<u>Rep Lim (ug/L)</u>	Flag
Hexachloro-1,3-butadiene	< 2.6	2.6	
2-Hexanone	< 10	10	
n-Hexane	< 10	10	
lodomethane	< 10	10	
Isopropylbenzene (Cumene)	< 5	5	
p-Isopropyltoluene	< 5	5	
Methylene chloride	< 5	5	
4-Methyl-2-pentanone (MIBK)	< 10	10	
Methyl-tert-butyl-ether	< 5	5	
1-Methylnaphthalene	< 5	5	
2-Methylnaphthalene	< 5	5	
Naphthalene	< 1	1	
n-Propylbenzene	< 5	5	
Styrene	< 5	5	
1,1,1,2-Tetrachloroethane	< 5	5	
1,1,2,2-Tetrachloroethane	< 0.66	1	1
Tetrachloroethene	< 5	5	
Toluene	< 5	5	
1,2,3-Trichlorobenzene	< 5	5	
1,2,4-Trichlorobenzene	< 5	5	
1,1,1-Trichloroethane	< 5	5	
1,1,2-Trichloroethane	< 5	5	
Trichloroethene	< 5	5	
Trichlorofluoromethane	< 5	5	
1,2,3-Trichloropropane	< 1	1	
1,2,4-Trimethylbenzene	< 5	5	
1,3,5-Trimethylbenzene	< 5	5	
Vinyl acetate	< 10	10	
Vinyl chloride	< 2	2	
Xylene, M&P	< 5	5	
Xylene, 0rtho	< 5	5	
Xylene (total)	< 10	10	
Dibromofluoromethane (surrogate)	99%		
1,2-Dichloroethane-d4 (surrogate)	95%		
Toluene-d8 (surrogate)	105%		
4-bromofluorobenzene (surrogate)	95%		
Analysis Date/Time:	6-26-23/16:25		
Analyst Initials	tjg		

8260 QC Continued...

		LCS/LCSD Conc	LCSD Result				
LCS/LCSD	LCS Results (ug/L)	<u>(ug/L)</u>	(ug/L)	LCS Rec.	<u>Rec.</u>	<u>% D</u>	Flag
Vinyl Chloride	49.2	50	48.2	98%	96%	2.1	
1,1-Dichloroethene	49.6	50	54.3	99%	109%	9.0	
trans-1,2-Dichloroethene	50.1	50	46.2	100%	92%	8.1	
Methyl-tert-butyl-ether	48.6	50	51.2	97%	102%	5.2	
1,1-Dichloroethane	46.8	50	46.7	94%	93%	0.2	
cis-1,2-Dichloroethene	49.0	50	46.3	98%	93%	5.7	
Chloroform	47.9	50	49.2	96%	98%	2.7	
1,1,1-Trichloroethane	48.8	50	49.8	98%	100%	2.0	
Benzene	47.9	50	48.7	96%	97%	1.7	
Trichloroethene	49.7	50	50.0	99%	100%	0.6	
Toluene	53.2	50	54.0	106%	108%	1.5	
1,1,1,2-Tetracholorethane	52.1	50	54.0	104%	108%	3.6	
Chlorobenzene	51.2	50	53.1	102%	106%	3.6	
Ethylbenzene	48.6	50	50.6	97%	101%	4.0	
o-Xylene	53.5	50	55.2	107%	110%	3.1	
n-Propylbenzene	53.9	50	50.5	108%	101%	6.5	
Dibromofluoromethane (surrogate)	101%		102%				
1,2-Dichloroethane-d4 (surrogate)	107%		101%				
Toluene-d8 (surrogate)	113%		105%				
4-bromofluorobenzene (surrogate)	109%		101%				
Analysis Date/Time:	6-26-23/15:38		6-26-23/15:54				
Analyst Initials	tjg		tjg				

ENVision Batch Number:

EPA 8260 Quality Control Data

062723VW

Method Blank (MB):	MB Results (ug/L)	<u>Rep Lim (ug/L)</u>	Flag
Acetone	< 100	100	
Acrolein	< 1	1	
Acrylonitrile	< 0.45	1	1
Benzene	< 5	5	
Bromobenzene	< 5	5	
Bromochloromethane	< 5	5	
Bromodichloromethane	< 5	5	
Bromoform	< 5	5	
Bromomethane	< 5	5	
n-Butanol	< 50	50	
2-Butanone (MEK)	< 10	10	
n-Butylbenzene	< 5	5	
sec-Butylbenzene	< 5	5	
tert-Butylbenzene	< 5	5	
Carbon Disulfide	< 5	5	
Carbon Tetrachloride	< 5	5	
Chlorobenzene	< 5	5	
Chloroethane	< 5	5	
2-Chloroethylvinylether	< 50	50	
Chloroform	< 5	5	
Chloromethane	< 5	5	
2-Chlorotoluene	< 5	5	
4-Chlorotoluene	< 5	5	
1.2-Dibromo-3-chloropropane	< 1	1	
Dibromochloromethane	< 5	5	
1.2-Dibromoethane (EDB)	< 1	1	
Dibromomethane	< 5	5	
1.2-Dichlorobenzene	< 5	5	
1.3-Dichlorobenzene	< 5	5	
1 4-Dichlorobenzene	< 5	5	
trans-1 4-Dichloro-2-butene	< 1	1	
Dichlorodifluoromethane	< 5	5	
1 1-Dichloroethane	< 5	5	
1 2-Dichloroethane	< 5	5	
1 1-Dichloroethene	< 5	5	
cis-1 2-Dichloroethene	< 5	5	
trans-1 2-Dichloroethene	< 5	5	
1.2. Dichloropropage	< 5	5	
1.3 Dichloropropane	< 5	5	
	< 5	5	
	 5 - E 	5	
	C >	G	
	S 4.1	4.1	
	< 5	5	
Etnyi metnacrylate	< 100	100	

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639 www.envisionlaboratories.com

8260 QC Continued			
Method Blank (MB):	MB Results (ug/L)	<u>Rep Lim (ug/L)</u>	Flag
Hexachloro-1,3-butadiene	< 2.6	2.6	
2-Hexanone	< 10	10	
n-Hexane	< 10	10	
lodomethane	< 10	10	
Isopropylbenzene (Cumene)	< 5	5	
p-Isopropyltoluene	< 5	5	
Methylene chloride	< 5	5	
4-Methyl-2-pentanone (MIBK)	< 10	10	
Methyl-tert-butyl-ether	< 5	5	
1-Methylnaphthalene	< 5	5	
2-Methylnaphthalene	< 5	5	
Naphthalene	< 1	1	
n-Propylbenzene	< 5	5	
Styrene	< 5	5	
1,1,1,2-Tetrachloroethane	< 5	5	
1,1,2,2-Tetrachloroethane	< 0.66	1	1
Tetrachloroethene	< 5	5	
Toluene	< 5	5	
1,2,3-Trichlorobenzene	< 5	5	
1,2,4-Trichlorobenzene	< 5	5	
1,1,1-Trichloroethane	< 5	5	
1,1,2-Trichloroethane	< 5	5	
Trichloroethene	< 5	5	
Trichlorofluoromethane	< 5	5	
1,2,3-Trichloropropane	< 1	1	
1,2,4-Trimethylbenzene	< 5	5	
1,3,5-Trimethylbenzene	< 5	5	
Vinyl acetate	< 10	10	
Vinyl chloride	< 2	2	
Xylene, M&P	< 5	5	
Xylene, 0rtho	< 5	5	
Xylene (total)	< 10	10	
Dibromofluoromethane (surrogate)	97%		
1,2-Dichloroethane-d4 (surrogate)	105%		
Toluene-d8 (surrogate)	106%		
4-bromofluorobenzene (surrogate)	100%		
Analysis Date/Time:	6-27-23/11:37		
Analyst Initials	tjg		

8260 QC Continued...

		LCS/LCSD Conc.	LCSD Result		LCSD		
LCS/LCSD	LCS Results (ug/L)	<u>(ug/L)</u>	<u>(ug/L)</u>	LCS Rec.	Rec.	<u>% D</u>	Flag
Vinyl Chloride	46.9	50	48.2	94%	96%	2.7	
1,1-Dichloroethene	51.5	50	46.1	103%	92%	11.1	
trans-1,2-Dichloroethene	50.4	50	48.4	101%	97%	4.0	
Methyl-tert-butyl-ether	50.6	50	47.8	101%	96%	5.7	
1,1-Dichloroethane	48.6	50	49.1	97%	98%	1.0	
cis-1,2-Dichloroethene	48.5	50	48.9	97%	98%	0.8	
Chloroform	51.5	50	48.4	103%	97%	6.2	
1,1,1-Trichloroethane	52.8	50	50.7	106%	101%	4.1	
Benzene	49.7	50	47.9	99%	96%	3.7	
Trichloroethene	52.8	50	49.8	106%	100%	5.8	
Toluene	55.8	50	50.3	112%	101%	10.4	
1,1,1,2-Tetracholorethane	53.6	50	56.0	107%	112%	4.4	
Chlorobenzene	51.6	50	47.6	103%	95%	8.1	
Ethylbenzene	50.8	50	49.7	102%	99%	2.2	
o-Xylene	49.7	50	52.2	99%	104%	4.9	
n-Propylbenzene	55.6	50	53.3	111%	107%	4.2	
Dibromofluoromethane (surrogate)	96%		91%				
1,2-Dichloroethane-d4 (surrogate)	115%		107%				
Toluene-d8 (surrogate)	109%		100%				
4-bromofluorobenzene (surrogate)	111%		103%				
Analysis Date/Time:	6-27-23/10:36		6-27-23/10:51				
Analyst Initials	tjg		tjg				

ENVision Batch Number:

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639 www.envisionlaboratories.com

EPA 8270SIM Quality Control Data

062323PW5

Flag

Method Blank (MB)	Method Blank	Reporting Limit
Acenanothene	< 1.0	1.0
Acenaphthylene	< 1.0	1.0
Anthracene	< 0.10	0.10
Benzo(a)anthracene	< 0.10	0.10
Benzo(a)pyrene	< 0.10	0.10
Benzo(b)fluoranthene	< 0.10	0.10
Benzo(q,h,i)pervlene	< 0.10	0.10
Benzo(k)fluoranthene	< 0.10	0.10
Chrysene	< 0.10	0.10
Dibenzo(a,h)anthracene	< 0.10	0.10
Fluoranthene	< 1.0	1.0
Fluorene	< 1.0	1.0
Indeno(1,2,3-cd)pyrene	< 0.022	0.022
1-methylnaphthalene	< 1.0	1.0
2-methylnaphthalene	< 1.0	1.0
Naphthalene	< 1.0	1.0
Phenanthrene	< 1.0	1.0
Pyrene	< 1.0	1.0
Nitrobenzene-d5 (surrogate)	49%	
2-Fluorobiphenyl (surrogate)	41%	
p-Terphenyl-d14 (surrogate)	37%	
Analysis Date/Time:	6-26-23/08:47	
Analyst Initials	NR	
Date Extracted	6/23/2023	
Initial Sample Volume	40 mL	
Final Volume	2.0 mL	

LCS/LCSD:	LCS Result (ug/L)	LCS/LCSD Conc. (ug/L)	LCSD Result (ug/L)	<u>LCS</u> Recovery	LCSD Recovery	<u>RPD</u>	<u>Flag</u>
Naphthalene	1.40	2.0	1.48	70.0%	74.0%	5.6%	
2-methylnaphthalene	1.18	2.0	1.24	59.0%	62.0%	5.0%	
1-methylnaphthalene	1.16	2.0	1.24	58.0%	62.0%	6.7%	
Acenaphthylene	1.22	2.0	1.29	61.0%	64.5%	5.6%	
Acenaphthene	1.26	2.0	1.21	63.0%	60.5%	4.0%	
Fluorene	1.15	2.0	1.12	57.5%	56.0%	2.6%	
Phenanthrene	1.45	2.0	1.43	72.5%	71.5%	1.4%	
Anthracene	1.64	2.0	1.64	82.0%	82.0%	0.0%	
Fluoranthene	1.90	2.0	1.89	95.0%	94.5%	0.5%	
Pyrene	1.84	2.0	1.93	92.0%	96.5%	4.8%	
Benzo(a)anthracene	1.16	2.0	1.12	58.0%	56.0%	3.5%	
Chrysene	1.33	2.0	1.37	66.5%	68.5%	3.0%	
Benzo(b)fluoranthene	1.22	2.0	1.22	61.0%	61.0%	0.0%	
Benzo(k)fluoranthene	1.33	2.0	1.35	66.5%	67.5%	1.5%	
Benzo(a)pyrene	1.36	2.0	1.42	68.0%	71.0%	4.3%	
Indeno(1,2,3-cd)pyrene	0.87	2.0	0.92	43.5%	46.0%	5.6%	
Dibenzo(a,h)anthracene	0.88	2.0	0.87	44.0%	43.5%	1.1%	
Benzo(g,h,i)perylene	0.99	2.0	1.05	49.5%	52.5%	5.9%	
Nitrobenzene-d5 (surrogate)	52%		54%				
2-Fluorobiphenyl (surrogate)	40%		47%				
p-Terphenyl-d14 (surrogate)	41%		50%				
Analysis Date/Time:	6-26-23/09:09		6-26-23/09:31				
Analyst Initials:	NR		NR				
Date Extracted:	6/23/2023		6/23/2023				
Initial Sample Volume:	40 mL		40 mL				
Final Volume:	2.0 mL	Your F	Projects. O	ur Pass	ion.		

EPA 6010B Metals Quality Control Data

ENVision Batch Number:	062923icp			
Method Blank (MB):	MB Results (mg/L)	Rep Lim (mg/L)	<u>Flag</u>	
Arsenic, total	< 0.01	0.01		
Cadmium, total	< 0.005	0.005		
Chromium, total	< 0.01	0.01		
Lead, total	< 0.01	0.01		
Analysis Date/Time:	6-29-23/12:39			
Analyst Initials:	gjd			
Laboratory Control Standard (LCS):	LCS Results(mg/L)	LCS Conc(mg/L)	<u>% Rec</u>	Flag
Arsenic, total	0.49	0.50	98	
Cadmium, total	0.52	0.50	104	
Chromium, total	0.52	0.50	104	
Lead, total	0.55	0.50	110	
Analysis Date/Time:	6-29-23/12:36			
Analyst Initials:	gjd			

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639 www.envisionlaboratories.com

Flag Number 1 <u>Comments</u> Reported value is below the reporting limit but above the MDL.

ENVISION Proj#: 2023 - 1278 Page / CHAIN OF CUSTODY RECORD

οť

ENVision Laboratories, Inc. | 1439 Sadlier Circle West Drive | Indianapolis, IN 46239 | Phone: (317) 351-8632 | Fax: (317) 351-8639

C								ENVisio	n Proj#:	SOS	3-1278	Page & of Z	
		Ċ	HAIN O	F CU	STOD	Y RI	ECORD	-					
ENVision Laborato	ories, Inc.	1439 Sadlier Ci	rcle West Dri	ve India	inapolis,	IN 462	39 Phone:	(317) 35	51-863	2 Fa	IX: (317) 35	1-8639	×.
Client: SES	IN	voice Address:			RE	QUEST	ED PARAME	ETERS			Sample Inte	arity: 0 %	
Report Address:	<u></u> 8 (8	iject Name: 2023 - 002	X			\square	A CONTRACT	a life	\searrow	\sim	(Circle) Samples on Ic Samples Intac Custody Seal:	e? (SE No tr? (SE No (SE No fee No	
Report To: CH	La	b Contact:			$\overline{)}$	$\overline{\ }$	A A				VOC vials free pH checked?	of head-space: res No N/A	
Phone:	Sa	mpled by:	X	×	X	No and a start	×××				Method 5035 5035 samples	collection used? Ves No received within 48 hr of	
Fax:	P.(D. Number:		0	No.	X	X		Pleas	e indica	collection: t		
Desired TAT: (Please Circle One) 1-day 2-day 3-day Std (5-7 bus. days		A/QC Required: (circle Level III	: if applicable) Level IV			X	2		conta	iners pu	er preservative l	below	
Sample ID	Coll. Date	Coll. Comp (C) Time	Matrix					HCI	[₽] OS ² H [€] ONH	HOPN	None Other	ENVision Sample ID	THE REAL
205	6 Bilas	1100 6	When	X	V	× ×		3	- 1 - I		620	5-12,223	
GP 6		1 Hill	1		>	×	N		1 1		6	12333	
GP 7		C.h.1)		-	·×	×			I Î		8	12324	
61 8	\rightarrow	Viriz(\rightarrow	\approx	×			1		9	13335	Т
Trip Blank	Lab	Dreifed	Z	N				->				12326	
		/ /											
										2			
Comments: & Arsenia .	a durin	m, chromit	m, Lead								_		
, Relinguish	ned by:		Date,	Time	0	1	7) Regeive	:Xq pa			Dạte ,	Time	
of mallant Falle	where the		0/22/23	14:3	Q	Z					2/22/2	3 14:30	
0 1				II.	>								

5035 CHECK-IN SHEET

Client Name: SES ENVision project#: 2023 - 1278

Cooler Temp: <u>3</u>°C

Method 5035A used: YES ⋈ NO □

ENVision provided tared vials w/stir bars & Terra Core T-handles: YES 🗶 NO 🗆

5035A samples were received within 48 hrs of collection: YES □ NO 🕱

5035A samples were frozen within 48 hrs of collection by lab: YES \square NO \bowtie If NO, did client freeze samples? YES \bowtie NO \square

5035ATable A.1 Reference: Sample is extruded into an empty sealed vial and cooled to $4^{\circ} \pm 2^{\circ}C$ for no more than 48 hours then frozen to < -7°C upon laboratory receipt.

Methanol was added to a vial from each sample for Medium-Level dilution within 48 hrs of collection: YES \square NO \heartsuit

5035ATable A.1 Reference: Sample is extruded into an empty sealed vial and cooled to $4^{\circ} \pm 2^{\circ}C$ for no more than 48 hours then preserved with methanol upon laboratory receipt.

Performed by/Date: J. Daulton 6.22.23

Your Projects. Our Passion.